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ABSTRACT

Simulink/Stateflow is a popular commercial model-based development tool for many in-

dustrial domains. For safety and security concerns, verification and testing must be performed

on the Simulink/Stateflow designs and the generated code. We present an automatic test

generation approach for Simulink/Stateflow based on its translation to a formal model, called

Input/Output Extended Finite Automata (I/O-EFA), that is amenable to formal analysis such

as test generation. The approach automatically identifies a set of input-output sequences to

activate all executable computations in the Simulink/Stateflow diagram by applying three dif-

ferent techniques, model checking, constraint solving and reachability reduction & resolution.

These tests (input-output sequences) are then used for validation purposes, and the failed

versus passed tests are used to localize the fault to plausible Simulink/Stateflow blocks. The

translation and test generation approaches are automated and implemented in a toolbox that

can be executed in Matlab that interfaces with NuSMV.
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CHAPTER 1 Introduction

Simulink/Stateflow [1] is a popular commercial model-based development tool for many

industrial domains, such as power systems, aircraft, automotives and chemical plants. Simulink

is much better for handling continuous systems, whereas Stateflow is much better for handling

state based problems. Code generators are used within the Simulink/Stateflow to automatically

generate the embedded software for the target system from the Simulink/Stateflow diagram,

and thereby considerably increasing the productivity. Owing to the correctness, safety, security,

etc. requirements of such systems, methods to analyze the system designs are needed. Since

Simulink/Stateflow has originally been designed for the simulation purposes, automated test

generation and verification for Simulink/Stateflow diagram is greatly needed to identify the

errors.

Several authors have tried different ways of test generation and verification for

Simulink/Stateflow diagram. Scaife et al. [2] are able to translate a subset of Simulink/Stateflow

into Lustre and verify the model using a model checking tool called Lesar. Gadkari et al. [3]

have translated Simulink/Stateflow to a formal language, called Symbolic Analysis Labora-

tory (SAL), and they generate test cases based on SAL model checking. [4] [5] introduced a

mutation-based test generation method for Simulink. [6] proposed a transition coverage testing

for Simulink/Stateflow using messy genetic algorithm. [7] integrates different test generation

techniques to enhance the test coverage of Simulink/Stateflow models. Various commercial

tools have been developed for the verification/testing of Simulink/Stateflow. Simulink Design

Verifier [8] is a verification/validation toolbox in Matlab for Simulink/Stateflow based on formal

analysis. HiLiTE [9] is a requirements-based verification/testing tool for Simulink/Stateflow

developed by Honeywell. Reactis [10] and T-VEC [11] are two popular commercial tools for
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automated test generation for Simulink/Stateflow models. In our case, we derive the test suite

based on the translation from Simulink/Stateflow to an automaton, which preserves the dis-

crete behaviors (behaviors observed at discrete time steps when the inputs are sampled and

the outputs are computed).

In this dissertation, we present an automated test generation and verification approach

for Simulink/Stateflow. A recursive method is introduced to translate a Simulink/Stateflow

diagram to an Input/Output Extended Finite Automata (I/O-EFA), which is a formal model

of reactive untimed infinite state system, amenable to formal analysis. It captures each com-

putation cycle of Simulink/Stateflow in form of an automata extended with data-variables to

capture internal states and also the input and output variables. We then discusses the method

to generate test cases for the Simulink/Stateflow diagram based on the corresponding trans-

lated I/O-EFA. To provide coverage for all computation flows of a Simulink/Stateflow diagram

which corresponds to the execution paths in the translated I/O-EFA model, each execution

path is analyzed for feasibility and reachability, and test cases are generated accordingly. The

test generation approach is implemented by using two techniques, model-checking and con-

straint solving using mathematical optimization. An improved test generation method is also

described to use a compact model, analytically solve the computations, and reduce the test

generation problem to a reachability problem, so that the technique is effective in terms of

achieving test coverage and efficient in terms of test generation time.

Test generation based on the requirements is also discussed by translating the requirements

to an equivalent automaton. Test cases are obtained as acyclic executions accepted by the au-

tomaton and are applied to test the requirements. Validation methods are proposed to validate

the model-based tests against the requirements and the requirements-based tests against the

model for “fail/pass”. Finally, we develop an error localization approach that uses the failed

versus passed tests to locate the errors within the Simulink/Stateflow blocks.
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1.1 Existing Tools for Simulink/Stateflow Testing

Some of the prominent commercially available tools for generating test cases from

Simulink/Stateflow models are: Simulink Design Verifier (SDV) [8] from Mathworks, Reactis

[10] from Reactive Systems Inc., T-VEC [11] from T-VEC Technologies, and HiLiTE [9] from

Honeywell International.

Simulink Design Verifier [8] is a tool for Simulink to perform test case generation from

and prove model properties of SL/SF models. This tool can also show un-reachability of

certain model elements. Simulink Design Verifier can generate test inputs that satisfy standard

coverage objectives as well as user-defined test objectives and requirements. These test inputs

can also be combined with tests defined using measured data so that simulations are testing

against model coverage, requirements, and real-world scenarios. However, many of the Simulink

blocks are not supported, such as “integrator”; some design properties cannot be expressed

by the tool, such as true liveness properties; and, a pre-defined upper bound of the test case

length is required for the test generation.

Reactis tester [10] uses a combination of random testing and guided simulation. It can

generate test cases very fast, however, due to the randomness of the search, high coverage

is hard to achieve. Besides, this approach is heuristics without explanation and is limited

regarding the length of generating input signals, model size and complexity leads to lower

structural coverage.

T-VEC [11] generates test cases automatically from the domain testing theory. It produces

unit, integration and system level test vectors and test drivers necessary to verify implemen-

tations of models. The test selection process produces the set of test vectors in revealing both

decision and computational errors in logical, integer and floating-point domains.

HiLiTE [9] is a requirements-based verification/testing tool for Simulink/Stateflow. Each

block is specified with certain requirements (predicates over the signals). It uses a data-flow

model of the Simulink/Stateflow and can propagate through the data-flow model to find the

range for each signal. Model defects are detected and test cases are automatically generated

and executed to cover all requirements in the Simulink/Stateflow model. However, it cannot
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handle general feedback loops in the Simulink/Stateflow models.

1.2 Dissertation Contributions

The main contributions of the dissertation are the followings.

1. We have developed a recursive method to translate a Stateflow chart into an I/O-EFA

that preserves the discrete behaviors. The overall model of a Stateflow chart has the

same structure as the model of a Simulink diagram proposed in our previous work, which

makes the two models integrable. The translated model shows different paths to represent

all the computational sequences, which makes it easier for formal analysis.

2. We have developed a systematic test generation method for Simulink/Stateflow based on

I/O-EFA models that representing the computations of a Simulink/Stateflow diagram.

Two model-based test implementation techniques, model-checking and constraint solving,

are implemented and compared. A requirements-based test generation approach for

requirements expressed as safety LTL formula is proposed.

3. We have developed an automated translation and test generation tool within the Matlab

environment that is ready for use. The translated I/O-EFA model can itself be simulated

in Matlab (by treating it as a “flat” Stateflow model).

4. Test validation method is introduced and error localization approach is applied to locate

the error at the Simulink/Stateflow level.

5. We reduce the problem of test generation to that of a reachability problem by introduc-

ing the notion of a Computation-Succession automaton that is a discrete-time hybrid

automaton where a location is reached if and only if a target computation-path possesses

a test case that can eventually enable the computation-path. A reachability resolution

procedure is developed to refine the hybrid automata, so that reachability based on the

refined hybrid automata is equivalent to reachability in the underlying graph, ignoring

the dynamics. When the results of the multiple execution of the computation-paths are
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analytically determined, our approach yields a more effective and efficient technique with

higher test coverage and faster test generation time. A condition for the termination of

the reachability resolution is provided.

1.3 Dissertation Organization

The remainder of the dissertation is organized as follows: Chapter 2 presents the modeling

of Simulink/Stateflow (results also presented in [12] [13] [14]); Chapter 3 proposes the test

generation approach based on the translated model (results also presented in [15]); Chapter 4

introduces an improved test generation approach based on a more compact model (results also

presented in [16]); Chapter 5 describes the test validation and error localization following the

test generation; Chapter 6 summarizes the chapters and concludes with suggestions for further

research; and Appendix A includes a detailed description of the definition of bisimulation.
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CHAPTER 2 Modeling of Simulink/Stateflow

In this chapter, we present the modeling of Simulink/Stateflow. Both Simulink and State-

flow are translated to Input/Output Extended Finite Automata (I/O-EFA), which is a formal

model of a reactive untimed infinite state system, amenable to formal analysis. A brief in-

troduction of I/O-EFA is provided. Our previous Simulink translation work [12] done by

Changyan Zhou is described and the translation of Stateflow (event-driven blocks) is presented

to complete the modeling approach. We have also implemented our Stateflow translation algo-

rithm along with the Simulink translation approach in [12] into an automated translation tool

SS2EFA, written in the Matlab script. A counter and a complex motor control system have

been used as the case studies for the proposed translation method and the tool. The simulation

results show that the translated model simulates correctly the original Simulink diagram at

each time step.

2.1 Introduction to I/O-EFA

An I/O-EFA is a symbolic description of a reactive untimed infinite state system in form

of an automaton, extended with discrete variables of inputs, outputs and data.

Definition 1 An I/O-EFA is a tuple P = (L,D,U, Y,Σ,∆, L0, D0, Lm, E), where

• L is the set of locations (symbolic-states),

• D = D1 × · · · ×Dn is the set of data (numeric-states),

• U = U1 × · · · × Um is the set of numeric inputs,

• Y = Y1 × · · · × Yp is the set of numeric outputs,
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• Σ is the set of symbolic-inputs,

• ∆ is the set of symbolic-outputs,

• L0 ⊆ L is the set of initial locations,

• D0 ⊆ D is the set of initial-data values,

• Lm ⊆ L is the set of final locations,

• E is the set of edges, and each e ∈ E is a 7-tuple, e = (oe, te, σe, δe, Ge, fe, he), where

– oe ∈ L is the origin location,

– te ∈ L is the terminal location,

– σe ∈ Σ ∪ {ε} is the symbolic-input,

– δe ∈ ∆ ∪ {ε} is the symbolic-output,

– Ge ⊆ D × U is the enabling guard (a predicate),

– fe: D × U → D is the data-update function, and

– he: D × U → Y is the output-assignment function.

I/O-EFA P starts from an initial location l0 ∈ L0 with initial data d0 ∈ D0. When at a

state (l, d), a transition e ∈ E with oe = l is enabled, if the input σe arrives, and the data d

and input u are such that the guard Ge(d, u) holds. P transitions from location oe to location

te through the execution of the enabled transition e and at the same time the data value is

updated to fe(d, u), whereas the output variable is assigned the value he(d, u) and a discrete

output δe is emitted. In what follows below, the data update and output assignments are

performed together in a single action.

2.2 Review Modeling of Simulink

In [12], a recursive modeling method is introduced to translate Simulink diagram to I/O-

EFA. Blocks in the Simulink library are treated to be “atomic” and two rules, connecting-rule

and conditioning-rule, are formulated to build complex blocks by combining the simpler ones.
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[12] presented algorithms for (i) modeling an atomic- block as an I/O-EFA, (ii) combining

the I/O-EFA models of simpler Simulink diagrams to build the I/O- EFA model of a more

complex Simulink diagram, constructed using certain rules of composition. [12] introduced

the concept of a step (resp., step-trajectory) of an I/O-EFA to emulate the computation of a

Simulink diagram at a sample time (resp., over a sequence of sample times).

In such an I/O-EFA model, each transition sequence from the initial location l0 back to

the initial location l0 through the time advancement edge e = (lm, l0,−,−,−,−, {k := k+ 1})

represents a computation sequence of the Simulink/Stateflow diagram at a sampling time.

Note for the time advancement edge e, it holds that he ≡ {k := k + 1} that advances the

discrete time counter by a single step. Such a transition sequence is called a computation path

as defined next.

Definition 2 A computation path (or simply a c-path) π in an I/O-EFA

P = (L,D,U, Y,Σ,∆, L0, D0, Lm, E) is a finite sequence of edges π ∈ {eπ0 ...eπ|π|−1 ∈ E
∗|oeπ0 , teπ|π|−1

∈ L0, heπ|π|−1
≡ {k := k + 1},∀i ∈ [1, |π| − 1] : oeπi = teπi−1

}.

Example 1 Consider the Simulink diagram Ψ of a bounded counter shown in Figure 2.1,

consisting of an enabled subsystem block and a saturation block. The output y5 increases

by 1 at each sample-period when the control input u is positive, and y5 resets to its initial

value when the control input u is not positive. The saturation block limits the value of y5

in the range between −0.5 and 7. The translated I/O-EFA P using the method of [12] is

shown in Figure 2.2. Each c-path in P represents a possible computation of the counter at a

sampling instant. For example, the path π3 = e2e8e10e12e13e19e20e21 in I/O-EFA P represents

the “reset” behavior, which is the computation sequence of the Simulink diagram Ψ in which

the input is zero so that the subsystem is disabled and its output remains as the initial level

and hence the saturation is not triggered in the saturation block. There are totally 18 c-paths

in the I/O-EFA P , representing all 18 computation sequences in the Simulink diagram Ψ.

[12] showed that the modeling approach is sound and complete: The input-output behavior

of an I/O-EFA model, as defined in terms of a step- trajectory, preserves the input-output
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Figure 2.1 Simulink Diagram of a Counter System

Figure 2.2 I/O-EFA of a Counter System
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behavior of the corresponding Simulink diagram at each sample time. Also due to the way the

models are composed to obtain the more complex models from the simpler ones, the approach

avoids any state-space explosion.

2.3 Modeling of Stateflow

For the modeling of Stateflow, we continue to use I/O-EFA as the target model for transla-

tion so as to retain consistency with the modeling of the Simulink diagrams. In order to have

our modeling process recursive, we treat the individual states of a Stateflow chart to be the

most elementary constructs for modeling, and define the atomic models for them. Next, two

composition rules are defined to interconnect the simpler models to form the more complex

models for the “AND” versus “OR” states, preserving their state execution and transition be-

haviors. By viewing the Stateflow chart’s hierarchical structure as a tree, we recursively apply

the two composition rules in a bottom-up algorithm to obtain the overall I/O-EFA model. Fi-

nally, the additional Stateflow features, such as event broadcasting and interlevel transitions,

are incorporated by refining the model at locations where the features reside. Furthermore, a

composition rule between Stateflow and Simulink models is introduced to combine them into

a single complete model.

2.3.1 Atomic Model for States

States are the most basic components in a Stateflow chart in that a simplest Stateflow chart

can just be a single state. Stateflow allows states to be organized hierarchically by allowing

states to possess substates, and same holds for substates. A state that is down (resp., up)

one step in the hierarchy is termed a substate (resp., superstate). We represent the most

basic components of a Stateflow chart as atomic models, which are the smallest modules that

are interconnected (following the semantics of the hierarchy and other Stateflow features as

described in the following sections) to build the model of an overall Stateflow chart.

Consider a Simulink diagram of a counter system shown in Figure 2.3. The counter itself

is a Stateflow chart, which gets the input from the signal source “pulse generator” to switch
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between the “count” and the “stop” mode. The saturation is a Simulink block that sets the

lower and upper bounds for the output values. The Stateflow chart consists of six states with

two parallel top-level states and two exclusive substates for each of them. This hierarchical

structure of the states is shown in a tree format in Figure 2.4. Each node of the tree can be

modeled as an atomic I/O-EFA model, which we describe below in this section.

Figure 2.3 Simulink diagram of a Counter system (top) and the Stateflow
chart of the counter (below)

Figure 2.4 Hierarchical Structure of Conuter’s Stateflow chart

The behavior of a Stateflow state comprises of three phases: entering, executing and exiting,

where

• Entering phase marks the state as active and next performs all the entry actions;

• Executing phase evaluates the entire set of outgoing transitions. If no outgoing transition

is enabled, the during actions, along with the enabled on-event actions, are performed;

• Exiting phase performs all the exit actions and marks the state inactive.
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According to the above behaviors, an individual state s of a Stateflow can be represented

in the form of an I/O-EFA of Figure 2.5.

Figure 2.5 Atomic Model for a Stateflow state

As can be seen from the figure, the atomic I/O-EFA model has three locations ls0, lsi , l
s
m

for differentiating the activation versus the deactivation process, where the transition

• ls0 → lsi captures the activation process, including the state entry and during actions, and

the transition

• lsi → lsm captures the deactivation process, including the state exit actions and the

transitions to higher/lower level.

The atomic model has internal data-variables dsa, d
s
l , {de|oe = s} for controlling the execu-

tion flow, where

• dsa is to determine if the particular state is inactive/active/newly active as captured by

the three values (0/1/2),

• dsl is to determine the direction of flow in the hierarchy: down/same/up as captured by

the three values (-1/0/1), and

• de is to determine if the outgoing transition e is active or not (0/1).

A formal description of this atomic model is given in the following algorithm.

Algorithm 1 A Stateflow state s can be represented as an I/O-EFA

(Ls, Ds,−,−,−,−, {ls0, lsi }, Ds
0, {lsi , lsm}, Es), where

• Ls = {ls0, lsi , lsm},

• Ds is the set of data variables consisting of {dsa, dsl } ∪ {de|oe = s},

• Ds
0 is the set of initial data values, and
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• Es = {ls0, lsi , [dsa = 2], {ens, dsa := 1, dsl := −1 (if s has a substate) or 1 (otherwise)}}⋃
{ls0, lsi , [dsa = 1∧¬(

∨
{e:oe=s} ge)], {dus, d

s
l := −1 (if s has a substate) or 1 (otherwise)}}⋃

{lsi , lsm, [dsl = 0], {exs}}, where

– ens is the entry actions of s,

– dus is the during actions of s,

– exs is the exit actions of s, and

– ge is the guard of the transition e.

The above atomic model captures a Stateflow state’s behavior as follows:

• When the Stateflow state s is newly activated and the location is transitioned to ls0, das

is set to 2 (as described later). Accordingly, initially the transition labeled “entry” is enabled,

and the state entry action ens is executed, and also dsa is set to 1 to notate that the state has

already been activated; dsl is set to -1 (if s has a substate and so the execution flow should be

downward into the hierarchy to a substate) or 1 (if s has no substate and so the execution flow

can only be upward to a superstate) to indicate that the state has finished executing in this

time step, and execution flow should go to another state;

• Once the state has been activated, dsa equals 1 and upon arrival at ls0 if none of the

outgoing transitions is enabled, the transition labeled “during” is executed causing the state

during action dus to be executed; dsa remains unchanged since the state is still in the execution

phase; dsl is set to -1 or 1 as described above in the previous bullet;

• When leaving the state, dsl is set to 0 (as discussed later), so upon arrival to lsi the

transition labeled “exit” is executed, causing the execution of the state exit action exs.

Example 2 Consider the counter system of Figure 2.3. Figure 2.6 shows an example of the

atomic model for the bottom-level state “outputAssignment.output” in the Stateflow chart of

the counter. The entry action, during action, and exit action are represented by three edges

in the I/O-EFA model following Algorithm 1.
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Figure 2.6 Atomic Model for State outputAssignment.output in the
Counter

2.3.2 Modeling State Hierarchy

Stateflow provides for hierarchical modeling of discrete behaviors by allowing a state to

possess substates which can be organized into a tree structure. The root node of the tree is the

Stateflow chart, the internal nodes are the substates of the Stateflow chart, and the leaves are

the bottom-level states with no substates of their own. As described in the previous section,

each state, which is a node of the tree, is modeled as an atomic model of the type shown in

Figure 2.5. The next step in the modeling is to connect these atomic models according to the

type (AND vs. OR) of the children nodes.

In case of AND substates, all substates must be active simultaneously and must execute

according to their execution order at each time step, whereas in case of OR substates, at most

one of the substates can be active at each time step, and one of the substates is deemed default

substate which gets activated at the first time step its superstate becomes active. For the

execution order of a state with substates, two rules must be followed: 1) The substates can be

executed only when their superstate is activated, and 2) A state finishes execution only when

all its substates have been evaluated for execution.

After the execution of a transition labeled “entry” or “during” of a state, all its outgoing

transitions are evaluated for enablement (if no outgoing transition is enabled, another execution

of “during” action is performed). The enabled transition with the highest priority is selected

for execution, and the particular transition is activated. Also the exit phase of the state is

initiated. Exit phase generally has the following execution sequence: The condition action

of the activated transition, the exit actions of the leaving state, the transition action of the

activated transition and the entry action of the entering state. Furthermore, if there are

multiple exit actions to be executed (i.e. the leaving state has substates), then those are
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ordered according to the following rule: The leaving state, along with all its substates, exits

by starting from the last-entered state’s exit action, and progressing in reverse order to the

first-entered state’s exit action.

With the above knowledge of the semantics of the AND/OR hierarchy, we can now model

the hierarchical behaviors by defining the corresponding composition rules. We first introduce

a few notation to make the presentation clearer.

Definition 3 A complex state ŝ is the state system consisting of the state s and all its imme-

diate substates. ŝ is said to be an AND- (resp., OR-) complex state if it possesses AND (resp.,

OR) substates. We define |ŝ| to indicate the number of substates in the complex state ŝ.

Following the state transition semantics, the modeling rule for a state with OR-substates

can be defined by the following algorithm. For an OR-complex state ŝ we use s∗ to denote its

default state.

Algorithm 2 An OR-complex state ŝ can be represented as an I/O-EFA

(Lŝ, Dŝ,−,−,−,−, {ls0, lsi }, Dŝ
0, {lsi , lsm}, E ŝ), where

• Lŝ =
⋃
s∈ŝ L

s,

• Dŝ =
∏
s∈ŝD

s,

• Dŝ
0 =

∏
s∈ŝD

s
0,

• E ŝ = E
⋃
s∈ŝE

s, where E is all newly introduced edges as shown in Figure 2.7:⋃
r∈ŝ−{s}{lsi , lr0, [dsl = −1 ∧ dra > 0],−}⋃
{lsi , lsi , [dsl = −1 ∧ (

∧
r∈ŝ−{s}(d

r
a = 0)], {ds∗a := 2}}⋃

r∈ŝ−{s}{lr0, lri , [dsa = 0], {dra := 0; drl := −1 (if s has a substate) or 0 (otherwise)}}⋃
r∈ŝ−{s},{e:oe=r}{(l

r
0, l

r
i , [d

r
a = 1∧ge∧dsa > 0], {cae; dra := 0; de := 1; drl := −1 (if s has a substate)

or 0 (otherwise)}}⋃
r∈ŝ−{s}{lri , lsi , [drl = 1], {dsl := 1}}⋃
r∈ŝ−{s}{lrm, lsi , [dsa = 0], {dsl := 0}}⋃
r∈ŝ−{s},{e:oe=r}{l

r
m, l

s
i , [d

s
a > 0 ∧ de = 1], {tae; dtea := 2; de := 0; dsl := −1}}, where
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– ge is guard condition of the transition e,

– cae is condition action of the transition e,

– tae is transition action of the transition e, and

– oe (resp., te) is the origin (resp., terminal) state of edge e.

Figure 2.7 OR-Complex state modeling. ∀r ∈ ŝ − {s}:
sExr ≡ [dsa = 0]{dra := 0; drl := −1or0}; ∀e : oe ∈ ŝ − {s}:
subCone ≡ [doea = 1∧ge∧dsa > 0]{cae; doea := 0; de := 1; doel := −1or0},
and subTransAe ≡ [dsa > 0∧de = 1]{tae; dtea := 2; de := 0; dsl := −1}

For an AND-complex state ŝ, its substates, although simultaneously active, are executed

in a certain order. With a slight abuse of notation we use r to denote the substate whose

execution order is r among all the substates of ŝ. Also for simplicity of notation let k = |ŝ|.

The modeling rule for a state with AND-substates is defined as follows.

Algorithm 3 An AND-complex state ŝ can be represented as an I/O-EFA

(Lŝ, Dŝ,−,−,−,−, {ls0, lsi }, Dŝ
0, {lsi , lsm}, E ŝ), where

• Lŝ =
⋃
s∈ŝ L

s,

• Dŝ =
∏
s∈ŝD

s,
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• Dŝ
0 =

∏
s∈ŝD

s
0,

• E ŝ = E
⋃
s∈ŝE

s, where E is all newly introduced edges as shown in Figure 2.8:

{lsi , l10, [dsl = −1 ∧ dsa > 0 ∧ d1a > 0],−}⋃
{lsi , lsi , [dsl = −1 ∧ d1a = 0], {∀r ∈ ŝ− {s} : dra := 2}}⋃
{lki , lsi , [dkl = 1], {dsl := 1}}⋃
r∈ŝ−{s,k}{(lri , l

r+1
0 , [drl = 1],−}⋃

r∈ŝ−{s}{lr0, lri , [dra = 1 ∧ dsa = 0], {dra := 0; drl := 1 (if s has a substate) or 0 (otherwise)}}⋃
{lsi , lki , [dsl = −1 ∧ dsa = 0 ∧ dka > 0],−}⋃
r∈ŝ−{s,1}{lrm, l

r−1
0 ,−,−}⋃

{l1m, lsi ,−, {dsl := 0})}.

Figure 2.8 AND-Complex state modeling. ∀r ∈ ŝ − {s}:
subParaExr ≡ [dra = 1 ∧ dsa = 0]{dra := 0; drl := −1or0}

With the above two composition rules, an overall model of a Stateflow chart, capturing

only the state hierarchy feature, can be obtained by applying the rules recursively, over the

tree structure of the state hierarchy, in a bottom-up fashion.
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Example 3 Consider the counter system of Figure 2.3. We start from the two bottom level

OR-substates “dataUpdate.stop” and “dataUpdate.count”, and compose them using the OR-

state connecting rule (Algorithm 2) to obtain the OR-complex state “dataUpdate” and “out-

putAssignment”. The results are shown in Figure 2.9 and Figure 2.10 respectively. Next a

model for the top-level AND-complex state (the Stateflow chart) is obtained by composing the

models of Figures 2.9 and 2.10 using the AND-Connecting Rule (Algorithm 3); the result is

shown in Figure 2.11.

Figure 2.9 Modeling of OR-Complex state dataUpdate within Statechart
of Counter

2.3.3 Model Refinement for Other Features

Besides the state hierarchy, Stateflow provides many additional features, such as events,

historical node and interlevel transitions. We capture these features into our model by refining

the I/O-EFA model obtained by recursively applying Algorithms 1-3. We illustrate the model

refinement by modeling one of the important features of Stateflow, namely a local event which

is a commonly used event type.

A local event is triggered at a certain source state as part of one of the actions, where along

with the event name, the destination states for the event broadcast are also specified. When
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Figure 2.10 Modeling of OR-Complex state outputAssignment within
Statechart of Counter

an event is triggered, it is immediately broadcast to its destination state for evaluation. At

this point, the destination state, including all of its substates, is executed by treating the event

condition to be true in all of the guard conditions where it appears. Then the execution flow

returns to the breakpoint where the event was triggered and resumes the execution.

The Stateflow event semantics permits an infinite chaining of events since each event can

cause an action in its destination state that triggers a new or the same event. Such recursive

behavior cannot be captured in the I/O-EFA modeling framework. However, practical systems

avoid infinite chaining of events by way of satisfying the following requirements [3], which we

assume to hold:

• Local events can be sent only to parallel states,

• Transitions out of parallel states are forbidden,

• Loops in broadcasting of events are forbidden, and

• Local events can be sent only to already-visited states.

For local event ev that is triggered in some source state src of a Stateflow chart, let eev ∈ E

be an edge that broadcasts the event ev. The model refinement step for modeling the local
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event behavior requires replacing the event-triggering edge eev with a pair of edges between the

event source state src and the event destination state des, one in each direction (see Figure 2.12

for illustration). Also letting Eev denote the set of edges in the destination state’s I/O-EFA

model where the event ev is received, then for each edge e ∈ Eev, its event label σe(= ev) is

replaced by the guard condition [dev = 1], where the binary variable dev captures whether or

not the event ev has been triggered.

Algorithm 4 Given an I/O-EFA model (L,D,−,−,−,−, L0, D0, Lm, E) obtained from re-

cursive application of Algorithms 1-3, an edge eev ∈ E that broadcasts an event ev to the

destination state des, and a set of edges Eev in the destination state that receive the event (i.e.,

∀e ∈ Eev : σe = ev), the refined I/O-EFA model is given by (L,D,−,−,−,−, L0, D0, Lm, E
′),

where

• E′ = [E|{σe→[dev=1]|e∈Eev} − {eev}]⋃
{oeev , ldes0 ,−, {PreEventAction, dev := 1},−}⋃
{ldesi , teev , [d

des
l = 1 ∧ dev = 1], {dev := 0;PostEventAction}},

where PreEventAction (resp., PostEventAction) denotes all the guard conditions and actions

appearing on the event-triggering edge prior to (resp., after) the event-broadcast label, and

E|{σe→[dev=1]|e∈Eo} is the set of edges obtained by replacing the event label σe(= ev) of each edge

e ∈ Eev by the guard condition [dev = 1] (no relabeling is done for the remaining edges in E − Eev)..

Figure 2.12 Modifying the model capturing state hierarchy to also model
local events

Recursive application of Algorithm 4 with respect to each event-triggering edge is required

to complete the model-refinement step for modeling the local events. Additional features such
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as historical node and interlevel transitions can also be modeled by similar refinement steps,

conforming to their respective Stateflow semantics. Due to space limitations, those are not

included.

Example 4 Consider the counter system of Figure 2.3. There are two local events “count” and

“stop” in the “outputAssignment” state with the destination “dataUpdate” state. Following

Algorithm 4, the two edges of Figure 2.11 labeled by the events “count” and “stop” respectively,

and shown in bold in Figure 2.11, are broken down into two parts with corresponding parts

re-routed as shown in Figure 2.13, where the re-routed edges are shown in bold and the original

edges are drawn in dotted lines.

Figure 2.13 Modification of Fig 2.11 to capture the local events within
Statechart of Counter

2.3.4 Final Touches: Finalizing the Model

At the top level, a Stateflow chart is also a Simulink block (the distinction being that it is

event-driven as opposed to time-driven). So to be consistent, at the very top level, the model

of a Stateflow chart ought to resemble the model of a time-driven Simulink block as introduced
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in [12]. Accordingly, the model of a Stateflow chart obtained from applying Algorithms 1-4

is adapted by adding another layer as shown in Figure 2.14. As is the case with the model

of a time-driven Simulink block (see [12] for the details), the final model of a Stateflow chart

is composed of two I/O-EFA parts that are linked by a “succession edge” (connects the final

location of 1st I/O-EFA to initial location of 2nd I/O-EFA) and a “time-advancement edge”

(connects the final location of 2nd I/O-EFA to initial location of 1st I/O-EFA and increments

a time-step counter k). The final model of a Stateflow chart is obtained as follows.

Algorithm 5 Given an I/O-EFA model (L,D,−,−,−,−, L0, D0,−, E) obtained from recur-

sive application of Algorithms 1-4 and model refinement concerning other features, the final

I/O-EFA model P φ of a Stateflow chart φ is composed of two I/O-EFAs connected through

succession and time-advancement edges as in Figure 2.14.

• The 1st I/O-EFA model is given by (L−, D−, U−, Y−,−,−, {l0−}, D0−, {lm−}, E−), where

– L− = L ∪ {l0−, lm−},

– D− = D,

– D0− = D0, and

– E− = {l0−, lrt0 ,−, {drta := 2, }}⋃
{lrti , lm−, [drtl = 1]}.

• The 2nd I/O-EFA model is given by (L+,−, U+, Y+,−,−, {l0+},−, {lm+}, E+), where

– L+ = {l0+, lm+}, and

– E+ = {l0+, lm+,−,−}.

Figure 2.14 depicts the final model of a Stateflow chart, ready to be integrated with models

of other components. The 1st I/O-EFA model goes down the state hierarchy to perform

the Stateflow computations. When the Stateflow computations of the current time step are

completed, the first I/O-EFA model returns to its final location in the top layer. The 2nd

I/O-EFA model is vacuous and is only included to retain consistency with the Simulink model.
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Figure 2.14 Finalized model of Stateflow chart

Example 5 Consider the counter system of Figure 2.3. It can be translated into an I/O-EFA

model as follows:

1. Modeling states: We first construct atomic model for each of the seven states (including

the Stateflow root) of Figure 2.4.

2. Modeling state hierarchy: We apply OR Complex State Composition Rule (Algorithm 2)

on the models obtained in step 1 of the two bottom-level OR complex states, and AND Complex

State Composition Rule (Algorithm 3) on models obtained in step 1 of the top-level AND

complex state. The result is as shown in Figure 2.11.

3. Modeling local events: Each edge in the model obtained in step 2 containing the event

“count” or “stop” is replaced with a pair of edges to connect the source state “outputAs-

signment” and the destination state “dataUpdate”, in either direction. At the same time the

evaluation of “count” (resp., “stop”) is modified to dcount = 1 (resp., dstop = 1). The result is

as shown in Figure 2.13.

4. Obtaining final model: The model obtained in step 3 is augmented by applying Al-

gorithm 5 to obtain a final model (this step introduces four extra locations, and a few extra

edges as shown in Figure 2.14. Finally, the I/O-EFA model for Stateflow chart (of counter) is

combined with the I/O-EFA model of Simulink block (of saturation) using the connecting rule
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introduced in [12]. The result is shown in Figure 2.15.

2.3.5 Correctness of Stateflow Modeling

In order to show that the I/O-EFA model preserves the Stateflow discrete behaviors, we

introduce the concept of a feasible c-path (c-path is defined in Definition 2) in the I/O-EFA

model of a Stateflow chart. We say that a c-path is feasible if it can be enabled under some

input(s) and initial data value(s).

Given an I/O-EFA model, its behavior is defined by its set of feasible c-paths. We show

that an I/O-EFA model at a sampling time correctly models the discrete behaviors of the

corresponding Stateflow chart at the same sampling time. In the correctness proof below, we

only provide a sketch of the proof-steps; the details are intentionally omitted, as those are

notationally cumbersome and do not add any extra insight.

Lemma 1 Given a Stateflow state s, its discrete behavior is correctly modeled by its I/O-

EFA model, that is there is one-to-one mapping between each of s’s discrete behaviors and the

feasible c-paths in its I/O-EFA model.

Proof: The possible discrete behaviors of a Stateflow state consists of “entering phase”,

“during phase”, and “exit phase”. From Algorithm 1 (also refer to Figure 2.5),

• entering phase is represented by the c-path: {ls0, lsi , [dsa = 2], {ens, dsa := 1, dsl := −1 or 1}},

and

• during phase is represented by the c-path: {ls0, lsi , [dsa = 1 ∧ ¬(
∨
{e:oe=s} ge)], {dus, d

s
l :=

−1 or 1}}, and

• exit phase is represented by the c-path: {lsi , lsm, [dsl = 0], {exs}}.

Each of the three discrete behaviors of a Stateflow state map one-to-one to the above

c-paths.

For simplicity in the following proofs the c-paths (sequences of edges) are represented as

sequences of locations. If there is unique edge between the consecutive locations, the location
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pair represents the unique edge. If there are multiple edges between the consecutive locations,

the location pair represents the edge which is feasible.

Lemma 2 Given an complex state ŝ, its discrete behaviors are correctly modeled by its I/O-

EFA model.

Proof: First we prove the state transition behavior of a complex state ŝ is correctly modeled

by its I/O-EFA model, that is each discrete behavior of ŝ is mapped one-to-one to a feasible

c-path in its I/O-EFA model.

(i) If the complex state is an OR-complex state, from Algorithm 2 (also refer to Figure 2.7),

• entering default substate 1 is represented by the c-path: ls0 → lsi → lsi → l10 → l1i → lsi ,

and

• entering active substate si is represented by the c-path: ls0 → lsi → lsi0 → lsii → lsi , and

• leaving substate si is represented by the c-path: ls0 → lsi → lsi0 → lsii → lsim → lsi , and

• switching from substate si to substate sj is represented by the c-path: ls0 → lsi → lsi0 →

lsii → lsim → lsi → l
sj
0 → l

sj
i → lsi , and

• leaving OR-complex state ŝ with active substate si is represented by the c-path: ls0 →

lsi → lsi0 → lsii → lsim → lsi → lsm.

Also note all the above c-paths possess the correct sequence of guards and updates (details

omitted).

(ii) If the complex state is an AND-complex state, from Algorithm 3 (also refer to Fig-

ure 2.8),

• entering substates is represented by the c-path: ls0 → lsi → l10 → l1i → l20 → ...→ lk−1
i →

lk0 → lki → lsi (edges of substates with execution order between 1 and k are omitted), and

• leaving AND-complex state ŝ is represented by the c-path: ls0 → lsi → lk0 → lki → lkm →

lk−1
0 → ... → l2m → l10 → l1i → l1m → lsi → lsm (edges of substates with execution order

between 1 and k are omitted).
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Also note all the above c-paths possess the correct sequence of guards and updates (details

omitted). Since the discrete behaviors of a complex state consist of transitions to substates, as

correctly modeled above, together with the evolution within each substate, which by Lemma 1

has been proven to be correct, the discrete behaviors of a complex state ŝ is correctly modeled

by its I/O-EFA model.

Next we prove the correctness of Algorithm 4 that is used to refine the model that captures

also the local events.

Lemma 3 The local events within a complex state ŝ are corrected modeled by its modified

I/O-EFA model obtained by applying Algorithm 4.

Proof: We first prove that the discrete behavior of each local event ev is correctly modeled

by its modified I/O-EFA model. From Algorithm 4 (also refer to Figure 2.12),

• execution of each event ev in its source state transition oeev → deev is modeled by the

c-path: oeev → ldes0 → ldesi → ... → ldesi → teev , where the first transition of the c-path

passes the control to the destination state and also sets the binary data variable dev to 1,

that serves as a guard of the subsequent transitions of the c-path that occur, respectively,

at the destination state and its substates, whereas the last transition of the c-path returns

control back to the source state.

Thus the local event behavior is correctly modeled by the modified I/O-EFA model. Since

the discrete behaviors of a complex state with local events consist of the event behavior and

the complex state behaviors without any local events, where the latter are correctly modeled

by the I/O-EFA model prior to modification of Algorithm 4 (as proved in Lemma 2), we can

conclude that the discrete behaviors of a complex state with local events is correctly modeled

by the modified I/O-EFA model of Algorithm 4.

Using the above three lemmas, we can prove the main theorem that proves the correctness

of the final I/O-EFA model.

Theorem 1 Given a Stateflow chart block φ, the discrete behaviors of φ is correctly modeled

by its I/O-EFA model P φ obtained from Algorithm 5.
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Proof: From Algorithm 5 (also refer to Figure 2.14), the c-paths of the I/O-EFA model

P φ of a Stateflow chart block are equivalent to the c-paths of the I/O-EFA model obtained by

applying Algorithm 1-4, as no additional paths are added, while the behaviors of the existing

paths is preserved. Further, the discrete behaviors of Stateflow chart block φ is equivalent to

the discrete behaviors of its root state ŝ. According to Lemma 3, the discrete behaviors of a

complex state ŝ is correctly modeled by the I/O-EFA model obtained by applying Algorithm 1-

4. Thus, the I/O-EFA model P φ also correctly models the discrete behaviors of Stateflow

chart block φ. (Note that the difference between the outputs of Algorithm 4 versus 5 is only

structural; the two models are behaviorally equivalent. Algorithm 5 is needed to make the

final model conform the standard models that were proposed for I/O-EFA based modeling of

time-driven blocks of Simulink in [12].)

2.4 Implementation and Validation

The Stateflow modeling approach described above, together with the Simulink modeling

method for time-driven blocks of our previous work [12], have been written in the Matlab

script, and implemented in an automated translation tool SS2EFA. Upon specifying a source

Simulink/Stateflow model together with the input and output ports, the tool can be executed

to output the corresponding I/O-EFA model in form of a “flat” Stateflow chart, which can

itself be simulated in Matlab. Above we proved the correctness of the translation, and below

we also validate this through several simulations to ensure that the result of simulating the

I/O-EFA is the same as that of simulating the source Simulink/Stateflow model.

Example 6 The simulation result comparison between the I/O-EFA model of the counter

(see Figure 2.15) and the original counter system (see Figure 2.3) is shown in Figure 2.16. The

simulation (using Intel Core 2 Duo P8400 2.27GHz, 2GB RAM) time is 4 seconds with sampling

period of 0.03 seconds, and the results are consistent with the behaviors of the counter.

Example 7 This example is of a servo velocity control system (shown in Figure 2.17) con-

sisting of a controller, a fault monitor (both written in Stateflow, shown respectively in Fig-

ure 2.18 and Figure 2.19), and a motor (written in Simulink, shown in Figure 2.20). There



www.manaraa.com

30

Figure 2.16 Simulation to compare the execution of Statechart Counter
(left) and its I/O-EFA model of Fig 2.15 (right)

are 45 number of atomic blocks with 48 number of Stateflow states in the overall model. The

Simulink/Stateflow diagram of the servo velocity control system is translated by our translation

tool. The translated I/O-EFA model is a flat Stateflow diagram consisting of 382 number of

states and 646 number of transitions. The CPU time (using Intel Core 2 Duo P8400 2.27GHz,

2GB RAM) for the translation is 45.1 seconds. The simulation result of the translated model

(shown in Figure 2.21) is identical to the discrete behaviors of the original Simulink/Stateflow

model.
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Figure 2.18 Controller Stateflow chart (named “Counter Logic + SW-level
Monitor”) of servo velocity control
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Figure 2.19 Fault monitor Stateflow chart (named “System-level Moni-
tor”) of servo velocity control
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Figure 2.20 Motor Subsystem (named “Controlled Plant + Residual Gen-
erator”) of servo velocity control
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Figure 2.21 Simulation results for the velocity set point and actual
servo velocity and residue; up-left (resp., up-right) figure is
for the set point and actual servo velocity of the original
Simulink/Stateflow model of servo system (resp., translated
I/O-EFA model); down-left (resp., down-right) figure is for
the residue of the original Simulink/Stateflow model of servo
system (resp., translated I/O-EFA model)
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CHAPTER 3 Test Generation of Simulink/Stateflow

Model-based test generation is an essential step in the model-based development process.

It aims to validate that the object code to be implemented in the target processor complies

with the design requirements. For Simulink/Stateflow, model-based test generation intends

to validate whether the Simulink/Stateflow diagram satisfies the design requirements, and

whether the generated code (for example ANSI C) preserves the functional behaviors of the

Simulink/Stateflow diagram. Testing is an essential step of validation, and while formal veri-

fication can catch many errors early in the design, it is unable to catch the errors introduced

by compilation or asynchrony of the underlying execution platform.

Several type of errors may occur in the design/implementation process from the require-

ments to Simulink/Stateflow diagram to the generated code, such as:

• Errors in the Simulink/Stateflow diagram block selection and connection.

• Errors in the Simulink/Stateflow diagram block parameter settings.

• Errors in the automatic code generator for the Simulink/Stateflow diagram caused for

example by finite precision arithmetic or timing constraints.

• Any human errors in the selection of code generation options, library naming/inclusion,

and others.

A model-based testing approach to reveal these errors is to create a set of test cases from

Simulink/Stateflow, and then validate or execute them against the requirements or the gener-

ated code to see if the test passes or fails. Any failed test cases can be used to find the errors

introduced in the Simulink/Stateflow design or code generation process.
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In Chapter 2, we introduced a recursive method to translate a Simulink/Stateflow diagram

to I/O-EFA, which captures each computation cycle of Simulink/Stateflow in form of an au-

tomaton extended with data-variables to capture internal states and also the input and output

variables. This chapter discusses the method to generate test cases for the Simulink/Stateflow

diagram based on the corresponding I/O-EFA derived using the approach in Chapter 2. To

provide coverage for all computation flows of a Simulink/Stateflow diagram which corresponds

to the execution paths in the translated I/O-EFA model, each execution path is analyzed for

feasibility and reachability, and test cases are generated accordingly. The test generation ap-

proach is implemented by using two techniques, model-checking and constraint solving using

mathematical optimization. The model-checking based implementation abstracts the I/O-EFA

and checks each execution path for eventual reachability (note in order to execute a path some

other sequence of paths may have to be executed in earlier cycles and hence the requirement of

eventual reachability); while the constraint solving based implementation recursively evaluates

the longer and longer path-sequences and the associated predicate for reachability. The test

cases are generated from the counterexamples (resp. path-sequence predicates) for the case of

model-checking (resp. constraint solving) process.

We have integrated the translation tool along with both the test generation implementations

into an automated test generation tool, written in Matlab script. A simple example of a counter

has been used as the case study to validate and compare the test generation implementations.

The test generation results show that both of the implementation methods can generate the

expected test cases while the constraint solving based approach is in general faster.

Test generation based on the requirements is also discussed by translating the requirements

to an equivalent automaton. Test cases are obtained as acyclic executions accepted by the

automaton and are applied to test the requirements.

3.1 Model-based Test Generation Approach

Our I/O-EFA model-based test generation approach is to find a set of input sequences, also

called test cases, which execute a certain set of computation sequences specified by a desired
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coverage criterion. For this, first the paths, representing those computation sequences, are

located in the I/O-EFA model, and next the input sequences which activate those paths are

obtained.

Chapter 2 formalizes and automates this mapping from computation sequences of

Simulink/Stateflow diagram to the c-paths (defined in Definition 2) in the translated I/O-EFA

model. Some of the computation sequences involving certain sequence of Simulink/Stateflow

computations may not be possible. This property is made transparent in our I/O-EFA by

showing conflict among the conditions along the corresponding c-paths. In Example 1, five

out of 18 computation sequences are possible and the corresponding five c-paths in I/O-EFA

are valid. As an example consider an invalid computation sequence “subsystem disabled” and

“saturation reaches upper limit”. Since the disabled subsystem generates an initial output 2,

which is within the saturator’s limit, the saturator cannot reach its upper limit. This conflict

also shows up in the corresponding c-path π5 = e2e8e9e12e13e19e20e21 over the edges e2 and e9,

where y5(k) := 2 on edge e2, whereas y5(k) > 7 on edge e9.

Besides the conflict among the conditions along the edges of a path, some of the impos-

sibilities of certain computation sequences are caused by the initial condition of the system.

Consider the saturation condition y5(k) < −0.5 in Example 1. None of the computation se-

quences with this saturation condition can be executed, since the counter output starts from

zero and increments by one each time it counts, and thus the count can never be less than

zero. The I/O-EFA model also captures these impossible computation sequences by showing

the corresponding c-paths as unreachable from the initial conditions.

Based on the above discussion, the test generation problem for Simulink/Stateflow can be

converted to finding the input sequences that execute the corresponding c-paths in the I/O-

EFA. We obtain the feasible and reachable paths and choose a subset of these paths satisfying

a desired coverage criterion.

In summary, our I/O-EFA based test generation for Simulink/Stateflow has the following

steps.

• Translate the Simulink/Stateflow diagram to I/O-EFA.
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• Find all the paths in I/O-EFA.

• Analyze the paths in I/O-EFA for feasibility and reachability.

• Invalid paths are reported for model soundness analysis.

• Valid paths satisfying the coverage criterion are used to generate a set of test cases for

activating them.

The translation method is implemented in Chapter 2. The remaining challenges to imple-

ment this test generation approach are listed as follows.

• How to identify the valid paths. The feasibility of these paths relies on not only itself

but also the initial condition and other paths that may be executed as prefixes.

• How to obtain the input sequences activating the valid paths. Some of the valid paths

cannot be activated at the very first time step. These paths require some prefix before they

can be activated.

In the next section, we discuss the implementations of our I/O-EFA based test generation

approach to deal with these challenges.

3.2 Algorithms for Model-based Test Generation

The proposed model-based test generation approach for Simulink/Stateflow has been im-

plemented by applying two different methods. Our previous translation tool SS2EFA has been

integrated with these two implementations to support the translation from Simulink/Stateflow

diagram to I/O-EFA. The following discussion focuses on the part of test generation to be

executed following the translation step.

3.2.1 Implementation using Model-Checking

Model-checking is a method to check automatically whether a model of a system meets a

given specification. NuSMV [17] is an open source symbolic model checker, which supports

the CTL and LTL expressed specification analysis and provides interface to Matlab, so that

the test generation tool (written in Matlab script) can call NuSMV for model-checking.

In this implementation, paths in I/O-EFA are checked against the abstracted I/O-EFA
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model in NuSMV for feasibility and reachability. Since NuSMV only allows for the representa-

tion of finite state systems, the translated I/O-EFA is first converted into a finitely abstracted

transition system as defined in Definition 4 below.

The finite abstraction of the model is based on the implementation requirements. Most

of the real world systems have finite data space and running time. The finite abstraction is

implemented in NuSMV input language as described below.

• Variable “steplimit” is set to a value to limit the number of time steps the system can

evolve, i.e. to upper bound the discrete time counter k < steplimit in the I/O-EFA model.

In the NuSMV file, when the system evolves exceeding the defined value of “steplimit”, the

variable “location” is given the value “deadend” and has no further outgoing transitions.

• Variable “precision” is the limit for the number of significant digits. Since NuSMV can

only verify integer values, “precision” determines how the non-integer value in the I/O-EFA

model can be transformed into integer. Each non-integer value is transformed as follows:

valuenew = round(valueold · 10precision), where valueold is the value in the I/O-EFA model,

and valuenew is the value in NuSMV file.

• Each variable dj is converted to an integer with upper limit dmaxj · 10precision and lower

limit dminj · 10precision, so that data space is finite. dmaxj and dminj are determined by the

requirements on the system.

Definition 4 Given an I/O-EFA P = (L,D,U, Y,Σ,∆, L0, D0, Lm, E), its finite abstracted

transition system P f is a tuple P f = (S,Uf , Y f ,Σ, Ef , S0), where

• S = L×Df is the set of its states, where Df is the finite abstraction of D,

• Ef := {((l1, df1), σ, uf , δ, yf , (l2, d
f
2)) | ∃d1 ∈ df1 , u ∈ uf , y ∈ yf , d2 ∈ df2 : (l1, d1)

σ,u,δ,y−→

(l2, d2)} is its set of transitions,

• S0 = L0 ×Df
0 is the set of its initial states, where Df

0 is the finite abstraction of D0,

• Uf is the finite abstraction of U ,

• Y f is the finite abstraction of Y .
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The finite abstracted transition system is implemented in the NuSMV input language,

where:

• The locations L of the I/O-EFA model is set as a variable and each location li is a value

for the variable “locations”,

• Each discrete variable dj in the I/O-EFA has its corresponding variable in NuSMV file.

Data update functions fe:D×U → D are expressed by the “next()” functions in the assignment

part of NuSMV file,

• Each input variable uk is defined in the NuSMV model as a nondeterministic variable. It

can choose any value in its range at the beginning of each time-step.

• Edges E in I/O-EFA model are mapped to a variable “edgeNum”, and each edge ei

corresponds to an integer value of variable “edgeNum”. This integer value is determined by

the edge number in the I/O-EFA model. Thus, a sequence of “edgeNum” value in NuSMV file

represents a sequence of edges, i.e. a path, in the I/O-EFA model.

The corresponding NuSMV file is used to check if the c-paths in the I/O-EFA model are

reachable. This is done as an instance of finding a counterexample as prescribed in the following

algorithm.

Algorithm 6 A c-path π = eπ0 ...e
π
|π|−1 of an I/O-EFA P = (L,D,U, Y,Σ,∆, L0, D0, Lm, E)

is determined to be reachable if in the finite abstraction P f |= φ holds, where φ is the CTL

formula EF (eπ0 ∧ EX(eπ1 ∧ · · ·EXeπ|π|−1) · · · ), meaning path π can eventually be activated in

the finite abstraction P f . An input sequence that makes π eventually executable is found as

a counterexample to the model-checking problem P f |= ¬φ.

If a counterexample for P f |= ¬φ is found, then P f |= φ holds, and the sequence of inputs

within the counterexample is a test case activating the path π. The final test suite is the set

of input sequences obtained from a subset of reachable paths Π satisfying a desired coverage

criterion.

In summary, the model-checking based test generation implementation generates the test

cases by the following steps.

• Translate the Simulink/Stateflow diagram into I/O-EFA model;
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• Map the I/O-EFA model to the corresponding NuSMV file;

• Extract all the paths from the I/O-EFA model and translate them into corresponding

CTL specifications;

• Check the CTL representations of the paths against the NuSMV model. Select the reach-

able paths satisfying the coverage criterion and the set of input-output sequences activating

those paths as the test suite. Report the unreachable paths for the analysis of model soundness.

The above implementation utilizes the existing model checker NuSMV and automates the

test generation for Simulink/Stateflow. However, model-checking process is time-consuming

as the state space explodes and the finite abstraction may also cause problems in the test

generation. So we investigate another approach as described next.

3.2.2 Implementation using Constraint Solving

Mathematical optimization is used to check feasibility of a set of constraints and to select

a best element from a set of available alternatives. The standard form of an optimization

problem is:

minimizex f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where

• f(x) : Rn → R is the objective function to be minimized over the variable x,

• gi(x) ≤ 0 are called inequality constraints, and

• hi(x) = 0 are called equality constraints.

Finding whether a c-path π of an I/O-EFA is reachable can be converted to a constraint

solving problem, which is an optimization problem without regard to an objective value as

follows:

minimize(d,u) 1

subject to Gπ(d, u)

where, Gπ(d, u, y) is called the path-predicate of the path π. It is a set of conditions over

(d, u) activating the path π. The above constraint solving problem has solution if the path
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predicate Gπ(d, u) is satisfiable (does not equate to False). The path predicate Gπ(d, u) along

with its data fπ(d, u) and output hπ(d, u) can be obtained as follows.

Algorithm 7 For a path π = eπ0 ...e
π
|π|−1, its path-predicate Gπ(d, u) can be computed recur-

sively backward, and data fπ(d, u) and output hπ(d, u) can be computed recursively forward

as:

Base step:

j = |π| − 1, k = (|π| − 1)− j;

Gjπ(d, u) := Geπ|π|−1
(d, u);

fkπ (d, u) := feπ0 (d, u);

hkπ(d, u) := heπ0 (d, u).

Recursion step:

Gj−1
π (d, u) := Geπj−1

(d, u) ∧Gjπ(feπj−1
(d, u), {u, heπj−1

(d, u)});

fk+1
π (d, u) := feπk+1

(fkπ (d, u), {u, hkπ(d, u)});

hk+1
π (d, u) := heπk+1

(fkπ (d, u), {u, hkπ(d, u)}).

Termination step:

If j 6= 0, then decrement j and return to recursion step; else stop, and set:

Gπ(d, u) := G0
π(d, u);

fπ(d, u) := f
|π|−1
π (d, u);

hπ(d, u) := h
|π|−1
π (d, u).

Note: If any of Ge is undefined, it is simply assumed true, i.e. Ge(d, u) = True, and

similarly if any of he is undefined, then it is simply assumed to be the same as identity, i.e.

he(d, u) = y.

Constraint solving problem is constructed to check if Gπ(d, u) 6= False, in which case, the

path π is feasible. The feasible paths obtained in Algorithm 7 are the candidate paths for test

generation. They are further checked to see if they can be reached from the initial condition,

i.e. if there exists a feasible path-sequence Π starting at the initial condition and ending with

the path under evaluation for reachability. The algorithm to determine the feasibility and

reachability of a path-sequence Π is as follows.
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Algorithm 8 Given a path-sequence Π = π0 . . . π starting at the initial condition I(d) ending

with the path π, the feasibility/reachability of Π can be checked recursively backward, while

its data update and output assignment can be computed recursively forward as:

Base step:

j = (|Π| − 1), k = (|Π| − 1)− j;

GjΠ(d, uj) := Gπ(d, uj);

fkΠ(d, uk) := fπ0(d, uk);

hkΠ(d, uk) := hπ0(d, uk).

Recursion step:

Gj−1
Π (d, {uj−1, . . . , u|Π|−1}) := Gπj−1(d, uj−1) ∧GjΠ(fπj−1(d, uj−1), {{uj , . . . , u|Π|−1},

hπj−1(d, uj−1)});

fk+1
Π (d, {u0, . . . , uk+1}) := fπk+1

(fkΠ(d, {u0, . . . , uk}), {uk+1, h
k
Π(d, {u0, . . . , uk})});

hk+1
Π (d, {u0, . . . , uk+1}) := hπk+1

(fkΠ(d, {u0, . . . , uk}), {uk+1, h
k
Π(d, {u0, . . . , uk})}).

Termination condition:

If j 6= 0, then decrement j and return to recursion step; else stop and set:

GΠ(d, {u0, . . . , u|Π|−1) = G0
Π(d, {u0, . . . , u|Π|−1);

fΠ(d, {u0, . . . , u|Π|−1) = f
|Π|−1
Π (d, {u0, . . . , u|Π|−1);

hΠ(d, {u0, . . . , u|Π|−1) = h
|Π|−1
Π (d, {u0, . . . , u|Π|−1);

and declare Π as reachable iff G0
Π(d, {u0, . . . , u|Π|−1}) ∧ I(d) 6= False.

Given a feasible path π, if none of the path-sequence with |Π| ≤ steplimit ending with π

is reachable, π is unreachable within the steplimit. Otherwise, π is reachable. Note steplimit

is the test case length requirement of the system.

Given a reachable path-sequence Π = π0...π ending with path π, a test input-output

sequence tπ = (u0, y0)...(u|Π|−1, y|Π|−1) activating the reachable path π is obtained by se-

lecting u0, . . . , u|Π|−1 such that G0
Π(d, {u0, . . . , u|Π|−1}) holds, and for j = 0, . . . , |Π| − 1,

yj = hjΠ(d, {u0, . . . , uj}). This input-output sequence tπ is the test case for path π.

The constraint solving based test suite is derived with an open source optimization tool

CVX [18], written in Matlab. Our test generation tool calls the CVX tool to check the feasibility
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of the problem.

In summary, this constraint solving based test generation implementation generates the

test cases using the following steps.

• Translate the Simulink/Stateflow diagram into I/O-EFA model;

• Extract all the paths from the I/O-EFA.

• Apply Algorithm 7 to obtain the feasible paths;

• For each feasible path π, apply Algorithm 8 on each path-sequence Π that ends in π and

|Π| ≤ steplimit to determine the reachability of π;

• Report the unreachable paths identified in the previous two steps for the analysis of

model soundness.

The above implementation applies the constraint solving to solve for the recursively ob-

tained path predicates. This method does not require finite abstraction of the data space and

loading of the model in another tool. This implementation is thus exact (requiring no abstrac-

tion) and is able to generate test cases faster than the implementation based on the model

checker.

3.3 Software Implementation of Model-based Test Generation Algorithms

Both of the model-based test generation implementations described above, as well as the

Simulink/Stateflow to I/O-EFA translation tool, have been incorporated in an automated

test generation tool. Upon specifying a source Simulink/Stateflow model file, both of our

implementation methods can be executed to output the test suite for the corresponding

Simulink/Stateflow diagram.

Example 8 Model Checker based Test Generator: Consider the I/O-EFA model (see Fig-

ure 2.2) of the counter system (see Figure 2.1). By specifying steplimit = 10, precision = 0,

all variables within [−2, 10], u ∈ {0, 1}, and path-covered criterion (all paths be covered), the

model checker based test generator generates four reachable paths and the corresponding test

cases are shown in Table 3.1.
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Table 3.1 Reachable Paths and Test Cases from Implementation with Mod-
el-Checking

Path Test Case ((u, y2) at each sample time)

e0e3e4e5e6e7e8e10e12e14e15

e16e17e18e19e20e21

(1, 0)

e1e3e4e5e6e7e8e10e12e14e15

e16e17e18e19e20e21

(1, 0), (1, 1)

e1e3e4e5e6e7e8e9e12e14e15

e16e17e18e19e20e21

(1, 0), (1, 1), (1, 2), (1, 3),

(1, 4), (1, 5), (1, 6), (1, 7), (1, 8)

e2e8e10e12e13e20e21 (0, 2)

The test generation time (using Intel Core 2 Duo P8400 2.27GHz, 2GB RAM) is 349.3

seconds and the results are as expected.

Example 9 Constraint Solving based Test Generator: Consider the same I/O-EFA model (see

Figure 2.2) of the counter system (see Figure 2.1). By specifying steplimit = 10, u ∈ {0, 1},

and path-covered criterion (all paths be covered), the constraint solving based test generator

provides five feasible paths as shown in Table 3.2 and four of them are reachable (π3 is identified

as unreachable). The test cases are generated as shown in Table 3.3.

The test generation time (using Intel Core 2 Duo P8400 2.27GHz, 2GB RAM) is 102.7

seconds and the results are as expected.

The two test generators provide identical test cases regarding the same Simulink/Stateflow

diagram and specifications. Constraint solving based implementation is able to obtain the

result about two times faster than model checker based implementation.

3.4 Requirements-based Test Generation

Design requirements are properties that a Simulink/Stateflow model is expected to satisfy.

They need to be tested against the Simulink/Stateflow model for satisfiability. The goal of

Requirements-based Test Generation for Simulink/Stateflow is to generate test cases to be able

to ensure testing of the specified requirements.
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Table 3.2 Feasible Paths from Implementation with Constraint Solving

Path No. Path Predicate Path Data Path Outputs

π0 u(k) > 0∧ d(k) := 0, y2(k) := 0,

d′ = 0 d′ := 1, y3(k) := 1,

d(k + 1) := 1, y5(k) := 0,

k := k + 1 y4(k) := 1

π1 u(k) > 0∧ d(k + 1) := y2(k) := d(k),

d′ = 1∧ d(k) + 1, y3(k) := 1,

−0.5 ≤ d(k) k := k + 1 y5(k) := d(k),

≤ 7 y4(k) := d(k)+1

π2 u(k) > 0∧ d(k + 1) := y2(k) := 7,

d′ = 1∧ d(k) + 1, y3(k) := 1,

d(k) > 7 k := k + 1 y5(k) := d(k),

y4(k) := d(k)+1

π3 u(k) > 0∧ d(k + 1) := y2(k) := −0.5,

d′ = 1∧ d(k) + 1, y3(k) := 1,

d(k) < −0.5 k := k + 1 y5(k) := d(k),

y4(k) := d(k)+1

π4 u(k) ≤ 0 d(k+1) := d(k), y2(k) := 2,

d′ := 0, y5(k) := 2

k := k + 1

Table 3.3 Test Cases from Implementation with Constraint Solving

Path Number Test Case ((u, y2) at each

sample time)

π0 (1, 0)

π1 (1, 0), (1, 1)

π2 (1, 0), (1, 1), (1, 2), (1, 3),

(1, 4), (1, 5), (1, 6), (1, 7), (1, 8)

π4 (0, 2)
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Each model requirement, being a property of an input/output computation sequence, can

be expressed as an Linear Temporal Logic (LTL) formula, with the propositions as the predi-

cates over the input/output variables of the I/O-EFA model of the Simulink/Stateflow diagram.

For example, the counter in Figure 2.1 has the requirement that “output can never exceed 7”.

The corresponding LTL formula is φ = [¬F (y2(k) > 7)].

[19] [20] [21] [22] discuss algorithms to compute a Büchi automaton accepting all infinite

sequences satisfying a given LTL formula. A Büchi automaton is defined as follows.

Definition 5 A Büchi automaton is a 5-tuple R = (Q,Γ,Ξ, Q0, Qm), where

• Q is a finite set of states,

• Γ is a finite set of symbols,

• Ξ ⊆ Q× Γ×Q is the set of state transitions,

• Q0 ∈ Q is the set of initial states, and

• Qm ⊆ Q is the set of marked states.

The states in R correspond to subformulas of φ and so |Q| is of the exponential order in |φ|;

the edge-labels Γ are Boolean formulas over the predicates in φ; since each edge in R processes

a new input-output pair, it implicitly advances the time counter by 1. R accepts exactly those

infinite runs (state sequences) that are initialized at Q0, follow the transition relation, and visit

Qm infinitely often. Thus it can be assumed without loss of generality that all marked states

are in some strongly connected component. Since we only generate finite length test cases,

we can only test those LTL properties that are properties of finite length runs/computations.

This is precisely the safety fragment of LTL [23]. For the safety fragment of LTL, its Büchi

model R is deterministic and it accepts finite traces from initial locations q0 ∈ Q0 to final

locations qm ∈ Qm (within a strongly connected component). A test case that activates the

requirement is generated from an acyclic path in R from q0 ∈ Q0 to qm ∈ Qm that imposes

constraints on the outputs. (A test case that does not constraint an output vacuously passes).

The Requirements-based Test Generation is defined in the algorithm below.
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Algorithm 9 Given a LTL requirement φ, the test cases activating φ are generated in the

following steps.

1. Compute the Büchi automaton R = (Q,Γ,Ξ, Q0, Qm) accepting all input/output se-

quences that satisfy φ.

2. Find all acyclic paths from q0 ∈ Q0 to qm ∈ Qm (qm is within a strongly connected

component), where there exists at least one proposition along the edges of the path that

constraints an output.

3. For each acyclic path tr = G0 . . . G|tr|−1, where Gi is the guard predicate on the (i−1)th

edge of the path, the test case is a finite sequence ttr = (u0, y0) . . . (u|tr|−1, y|tr|−1), where for

i = 0, . . . , |tr| − 1, (ui, yi) satisfies the guard Gi.

Example 10 Consider the counter in Figure 2.1 with requirement that “output is zero when-

ever input is non-positive for a first time, and then on output can be arbitrary”. The LTL

formula for this requirement is [u ≤ 0 ⇒ y2 = 0]U [L(u ≤ 0)], where U denotes until and L

denotes in last step. The Büchi automaton computed from the LTL formula is as shown in

Figure 3.1. There is one acyclic path tr = [[u ≤ 0] ∧ [y2 = 0]] that has a constraint on the

output. The test case obtained from tr is ttr = {(u0, y0) = (0, 0)}.

Figure 3.1 Büchi automaton computed from LTL formula
[u ≤ 0⇒ y2 = 0]U [L(u ≤ 0)]

Remark 1 Note the requirements-based test generation is a much simpler exercise than the

model-based test generation since each acyclic accepted path of the requirements model can be

activated on its own, without having to execute any preparatory prefix path-sequence. This is

because the path-predicates in the requirements-model do not involve any data-variables, only

the input-output variables, and so no prior preparation is needed to set the data-variables to the

right values. In contrast, the model-based test generation requires the execution of an earlier

prefix path-sequence so as to “prepare” the data-variables to the right values. Accordingly,
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the requirements-based test generation is implemented simply as a special case of model-based

test generation.
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CHAPTER 4 Reduction of Test Generation to Reachability and its Novel

Resolution

Test generation approach in Chapter 3 involves a bounded length search and finds the test

cases with lengths within the bound. It starts backwards from a target computation path (c-

path) of the I/O-EFA model to be tested and finds a sequence of prefix computation-paths to

reach the initial condition. Note the execution of a prefix is required to set the data values for

the target c-path to become executable. Determining whether or not such an enabling prefix

exists is undecidable in general. Our technique in Chapter 3 checks all the path-sequences

ending with the target c-path within certain time step limit to see if the c-path can be reached

from the initial condition. As expected due to the undecidability of the problem, the approach

is not guaranteed to find test cases for all reachable c-paths.

Test cases with length longer than the bound used by the approach of [15] may exist for

Simulink/Stateflow diagrams possessing loops since it may take several iterations along the loop

before a data value suitable to enable a target computation-path becomes available. In the case

that we are able to “collapse” the computation of those several iterations into a single step by

analytically solving the computations performed, it will become possible to explore arbitrary

length iterations. Building on this idea, this chapter improves the test generation approach to

reduce the test generation time and remove constraints on the maximum test case length for

those Simulink/Stateflow models for which the computation results of the multiple iterations

of each computation path can be analytically computed (this for example is the case for linear

update functions). We first apply the techniques in our previous papers [24] [12] [13] [15]

to convert the Simulink/Stateflow diagram into I/O-EFA model and enumerate all feasible

c-paths whose enabling predicates are non-False (note feasibility is only a necessary condition
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for reachability since the enabling predication, while non-False, may not be reachable from

the initial condition). To be able to check reachability of a target computation-path, we next

create a computation-succession automaton which is an instance of an discrete-time hybrid

automaton and preserves the computations of the I/O-EFA. Test generation is then done by

performing reachability analysis on this hybrid automaton.

Reachability analysis for hybrid automata is widely studied subject, and in general unde-

cidable. See for example some recent surveys [25–27]. Our contribution lies in the utilization of

the analytical solutions of the dynamics, whenever feasible, in arriving at a novel reachability

resolution technique.

Our approach iteratively refines the hybrid automaton to obtain an equivalent refined hy-

brid automaton. The idea is to split each location into a number of locations and associate a

stronger invariant condition with the locations and stronger guard conditions with the incom-

ing/outgoing edges so that the reachability in the hybrid automaton reduces to the reachability

in the underlying graph, ignoring all the dynamics. We show that the termination of the it-

erative refinement is guaranteed when the I/O-EFA model possesses a finite late-bisimilar

quotient. Also while the iterative refinement may not terminate in general, we show through

examples that the approach is more effective compared to the test generation approaches in

Chapter 3 in the sense that it is able to provide a larger test coverage due to the use of the

analytical solutions that allows unbounded length computations. Also the approach turns out

to be more efficient needing less time for test generation since the results of unbounded length

computations are analytically derived offline. The hybrid automaton-based approach is also

applied on the defect-detection and requirements-satisfaction to more efficiently and effectively

detect defects and unsatisfied requirements.

4.1 Introduction to I/O-HA

In Chapter 2, we modeled a Simulink/Stateflow diagram as an Input/Output Extended

Finite Automaton (I/O-EFA) model preserving its discrete behaviors. In this chapter we

reduce the test generation problem to the reachability in a discrete-time Input/Output Hybrid
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Automaton (I/O-HA) model, which is more general than an I/O-EFA model, and is defined

as follows.

Definition 6 An I/O-HA is a tuple P = (L,D,U, Y,Σ,∆, L0, D0, Lm, E), where

• L is the set of locations (symbolic-states), and each l ∈ L is a 3-tuple, l = (Gl, fl, hl),

where

– Gl ⊆ D × U is location-invariant,

– fl : D × U → D is data-update function, and

– hl : D × U → Y is output-assignment function.

• D = D1 × · · · ×Dn is the set of data (numeric-states),

• U = U1 × · · · × Um is the set of numeric inputs,

• Y = Y1 × · · · × Yp is the set of numeric outputs,

• Σ is the set of symbolic-inputs,

• ∆ is the set of symbolic-outputs,

• L0 ⊆ L is the set of initial locations,

• D0 ⊆ D is the set of initial-data values,

• Lm ⊆ L is the set of final locations,

• E is the set of edges, and each e ∈ E is a 7-tuple, e = (oe, te, σe, δe, Ge, fe, he), where

– oe ∈ L is origin location,

– te ∈ L is terminal location,

– σe ∈ Σ ∪ {ε} is symbolic-input,

– δe ∈ ∆ ∪ {ε} is symbolic-output,

– Ge ⊆ D × U is enabling guard (a predicate),



www.manaraa.com

54

– fe : D × U → D is data-update function, and

– he : D × U → Y is output-assignment function.

An I/O-HA P starts from an initial location l0 ∈ L0 with initial data d0 ∈ D0. Within a

location l, P evolves over discrete-time steps as long as the data satisfies the invariant guard

condition Gl, and at each time step uses the data update function fl and the output assignment

function hl to modify the data and the output. When at a state (l, d), a transition e ∈ E with

oe = l is enabled, if the input σe arrives, and the data d and input u are such that the guard

Ge(d, u) holds. P transitions from location oe to location te through the execution of the

enabled transition e and at the same time the data value is updated to fe(d, u), whereas the

output variable is assigned the value he(d, u) and a discrete output δe is emitted. In what

follows below, the data update and output assignments are performed together in a single

action.

An I/O-EFA is a specialized I/O-HA with location-invariant as True, location update and

assignment functions as the identity maps.

4.2 Computation-Succession Hybrid Automaton

In Chapter 3, each single-input computation of a Simulink/Stateflow diagram is represented

as a computation-path of an I/O-EFA model. Thereby the test generation problem reduces to

finding for each computation-path an input-sequence, that eventually executes that c-path.

For each c-path sequence ω = π0 . . . π|ω|−1|, it is possible to compute its enabling guard

Gω ⊆ D × U recursively backwards, and its data-update function fω : D × U → D and its

output-assignment function hω : D × U → Y recursively forward using Algorithm 7-8. Then

a c-path π is immediately executable (equivalently, feasible) if and only if its enabling guard

Gπ(d, u) is satisfiable, and π is eventually executable (equivalently, reachable) if there is a

path-sequence ω ending in π (i.e., π|ω|−1 = π), such that Gω(d, {u0 . . . u|ω|−1}) is satisfiable.

Example 11 Consider the Simulink diagram of a bounded counter shown in Figure 4.1, which

is a modified version of the counter in Figure 2.3 with upper bound of the saturation block
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Figure 4.1 Simulink Diagram of a Counter System

Figure 4.2 I/O-EFA model of the Counter System in Figure 4.1
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increased to 100000. It consists of an enabled subsystem block and a saturation block. The

output y5 increases by 1 at each sample-period when the control input u is positive, and y5

resets to its initial value when the control input u is not positive. The saturation block limits

the value of y5 in the range between −0.5 and 100000. The translated I/O-EFA P using the

method of Chapter 2 is shown in Figure 4.2. As can be seen the translated I/O-EFA has 18

different c-paths starting and ending in the initial location, and going around the loop once

(which is exactly the computation of one time-step). It turns out that only 5 out of 18 c-paths

are feasible, as analyzed by Algorithm 7, and only 4 of 5 are reachable. These are listed in

Table 4.1.

Since the reachability of a c-path depends on the succession of computations, we introduce

the notion of a Computation-Succession Hybrid Automaton to characterize the reachability of

the c-paths.

Algorithm 10 Given a set of feasible c-paths ΠP of a I/O-EFA model

P = (L,D,U, Y,Σ,∆, L0, D0, Lm, E), its Computation-Succession Hybrid Automaton (CS-

HA) is obtained as, PΠ = (LΠ, D, U, Y,Σ,∆, LΠ
0 , D0, L

Π, EΠ), where

• LΠ =
⋃
π∈ΠP {lπ := (Gπ(d, u), fπ(d, u), hπ(d, u))} is its set of locations, 1-to-1 mapped

to ΠP . (PΠ has one location lπ for each feasible c-path π of P , and lπ’s invariant/data-

update/output-assignment are the same as the guard/data-update/output-assignment of

π.)

• LΠ
0 =

⋃
π∈ΠP :Gπ(d,u)∧D0 6=False{lπ} is its set of initial locations. (Initial locations of PΠ

are the initially executable c-paths of P .)

• EΠ =
⋃
π,π′∈ΠP ,π 6=π′{(lπ, lπ

′
,−,−, Gπ′(d, u),−,−)} is its set of transitions. (Each feasible

c-path of P may be succeeded by each another feasible c-path of P , and so PΠ has an

edge-set that makes its graph completely connected, with each edge guarded by the

invariant (equivalently, guard) of its successor location.)

Note, by definition, the CS-HA is a completely connected graph over the set of feasible

c-paths acting as nodes (locations), with each incoming edge to a c-path node guarded by that
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Table 4.1 Path Analysis of I/O-EFA model of Figure 4.2

Path π Path Guard Gπ Path Data fπ Path Outputs hπ

π0 = u(k) > 0∧ d(k) := 0, y2(k) := 0,

e0e3e4e5 d′(k) = 0 d′(k + 1) := 1, y3(k) := 1,

e6e7e8e10e12 d(k + 1) := 1, y5(k) := 0,

e14e15e16e17 k := k + 1 y4(k) := 1

e18e19e20e21

π1 = u(k) > 0∧ d(k + 1) := y2(k) := d(k),

e1e3e4e5e6 d′(k) = 1∧ d(k) + 1, y3(k) := 1,

e7e8e10e12 −0.5 ≤ d(k) d′(k + 1) := 1, y5(k) := d(k),

e14e15e16e17 ≤ 100000 k := k + 1 y4(k) := d(k) + 1

e18e19e20e21

π2 = u(k) > 0∧ d(k+1) := d(k)+1, y2(k) := 100000

e1e3e4e5e6 d′(k) = 1∧ d′(k + 1) := 1, y3(k) := 1,

e7e8e9e12 d(k) > 100000 k := k + 1 y5(k) := d(k),

e14e15e16e17 y4(k) := d(k) + 1

e18e19e20e21

π3 = u(k) > 0∧ d(k+1) := d(k)+1, y2(k) := −0.5,

e1e3e4e5e6 d′(k) = 1∧ d′(k + 1) := 1, y3(k) := 1,

e7e8e11e12 d(k) < −0.5 k := k + 1 y5(k) := d(k),

e14e15e16e17 y4(k) := d(k) + 1

e18e19e20e21

π4 = u(k) ≤ 0 d(k + 1) := d(k), y2(k) := 2,

e2e8e10e12 d′(k + 1) := 0, y5(k) := 2

e13e20e21 k := k + 1
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c-path’s guard condition, and the set of initially reachable c-paths serving as the set of initial

nodes. For Simulink/Stateflow diagrams with deterministic runs, the corresponding I/O-EFA

model is deterministic, and as a result the enabling guards of the c-paths are pair-wise disjoint,

meaning the set {Gπ(d, u) | π ∈ ΠP } defines a partition of the set D×U , implying that the CS-

HA PΠ is also deterministic. Finally note that the CS-HA PΠ does not possess any self-loops,

rather the repeated execution of a c-path is captured through the semantics of a hybrid-

automaton that allows evolution in the same location for multiple time-steps, tantamount to

executing a self-loop.

The following result is clear from construction.

Theorem 2 Given an I/O-EFA P modeling a Simulink/Stateflow diagram, a feasible c-path

π ∈ ΠP is reachable if and only if the location lπ is reachable in the corresponding CS-HA PΠ.

Example 12 Given the feasible paths in Table 4.1, the corresponding CS-HA is shown in

Figure 4.3.

4.3 Reachability Resolution for CS-HA

To aid the reachability analysis, we present a novel reachability resolution technique that

refines the CS-HA such that location reachability is equivalent to reachability in the underlying

graph, ignoring the dynamics, whenever the refinement terminates.

For this, the locations are split according to the preconditions to reach their successors.

The precondition of the transition from one location to another is defined in the algorithm

below. It requires the computation of the guard condition that allows the N steps of evolution

in location l, along with the corresponding data-updates and output-assignments.

Algorithm 11 Given a CS-HA PΠ, for each l ∈ LΠ, do the following:

Base step:

j = 0, i = (N − 1)− j;

Gil(d, uk+i) := Gl(d, uk+i);

f jl (d, uk+j) := fl(d, uk+j);
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Figure 4.3 CS-HA of the I/O-EFA model in Figure 4.2. Transition guards,
which are the same as the invariants of the destination location,
are omitted.
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hjl (d, uk+j) := hl(d, uk+j). (Let πl be the feasible c-path of P represented by a location l

of PΠ. Then the base step computes the guard for the last, i.e., Nth execution of πl, together

with the data-update and output-assignment of the first execution of πl.)

Recursion step:

Gi−1
l (d, {uk+i−1, . . . , uk+N−1}) := Gl(d, uk+i−1) ∧Gil(fl(d, uk+i−1), {{uk+i, . . . , uk+N−1},

hl(d, uk+i−1)});

f j+1
l (d, {uk, . . . , uk+j+1}) := fl(f

j
l (d, {uk, . . . , uk+j}),

{uk+j+1, h
j
l (d, {uk, . . . , uk+j})});

hj+1
l (d, {uk, . . . , uk+j+1}) := hl(f

j
l (d, {u0, . . . , uk+j}),

{uk+j+1, h
j
l (d, {uk, . . . , uk+j})}). (Recursion step computes the guard of the last N − (i −

1) executions of πl, together with the data-update and output-assignment of the first j + 1

executions of πl. Note the former calculation uses the guard for last N − i executions of πl (a

backward recursion), whereas the latter calculation uses the data-update/output-assignment

of the first j executions of πl (a forward recursion).)

Termination step:

j 6= N − 1, then increment j and return to recursion step; else stop, and define the

precondition Gll′(d) to transit from l to a successor l′ ∈ succ(l), as:

Gll′(d) =
∨
N≥1

[
∃{uk, . . . , uk+N} : G0

l (d, {uk, . . . , uk+N−1})

∧Gl′(fN−1
l (d, {uk, . . . , uk+N−1}), uk+N )

]
.

(Upon termination, the precondition to transit from l to successor l′ by evolving at l for one or

more steps is computed. Note that Gll′(d) is solvable whenever G0
l and fN−1

l can be analytically

computed.)

Next these preconditions of the transitions from the locations to their successors are used

to partition the location-invariants, and split the locations accordingly, so each split location

is endowed with its own stronger invariant, which satisfies the precondition to reach a subset

of successors, while its data-update and output-assignment functions are inherited as is. The

refinement of the CS-HA is defined as follows.
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Algorithm 12 Given a CS-HA PΠ = (LΠ, D, U, Y,Σ,∆, LΠ
0 , D0, L

Π, E), the refinement algo-

rithm iteratively computes for each iteration n, a refined hybrid automaton

Pn = (Ln, D, U, Y,Σ,∆, Ln0 , D0, L
n, En), where Ln0 := {l ∈ Ln | Gl ∧ D0 6= False}, and

En := {(l, l′,−,−, Gl′ ,−,−) | l, l′ ∈ Ln, l 6= l′, Gll′(d) 6= False}, as follows (note for each

n ≥ 0, only Ln needs to be iteratively computed since definitions of Ln0 and En0 are derived

from that of Ln):

Base step: L0 = {(Gl(d, u), fl(d, u), hl(d, u)) | l ∈ LΠ}. (Locations of P 0 are the same as

those of PΠ.)

Recursion step: Ln+1 =
⋃
l∈Ln,G(d)∈Gl{(Gl(d, u) ∧ G(d), fl(d, u), hl(d, u))}, where for each

l ∈ Ln, Gl :=
⋃
L′⊆succ(l){

∧
l′∈L′ Gll′(d)

∧
l′∈succ(l)−L′ ¬Gll′(d)} is the partition induced by

{Gll′(d) | l′ ∈ succ(l)}. (To obtain the locations Ln+1, each location l of Ln is split into

a number of locations, one per subset of the successors of l. The guard condition of a split

location is the precondition to reach a certain subset of successors of the original location,

while the data-update and output-assignment are preserved after the split.)

Termination step: If Ln+1 = Ln or step-limit, stop, and set PΠ := Pn; else, increment n

and return to recursion step. (Termination occurs when splitting does not introduce additional

locations since the extra ones turn out to have False guards.)

Example 13 Consider the CS-HA shown in Figure 4.4. The CS-HA is refined according to

Algorithm 12. Firstly, since lπ1 has three successors with three different edge guards, there

are eight different subsets of successors, but only three of them have non-False preconditions,

and so lπ1 is split into three locations lπ10 , lπ11 , and lπ12 as in Figure 4.5. This requires the

application of Algorithm 11 to find the guards Glπ1 lπ2 (d(k)) = [d(k) = 2], Glπ1 lπ3 (d(k)) =

[d(k) = 3], Glπ1 lπ4 (d(k)) = [2 < d(k) < 3 ∨ 3 < d(k) ≤ 4], and then performing the refinement

as in Algorithm 12 that splits lπ1 into lπ10 , lπ11 , lπ12 with the invariants Glπ1 lπ2 , Glπ1 lπ3 , Glπ1 lπ4

respectively, and with the same data-update and output-assignment functions as lπ1 . Next,

since lπ0 has three successors with three different edge guards, there are eight different subsets

of successors, but only three of them have non-False preconditions, and so lπ0 is split into three

locations lπ00 , lπ01 , and lπ02 as in Figure 4.6. Again this requires applying Algorithm 11 to find the
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guards Glπ0 lπ10
(d(k)) = [d(k) = 0], Glπ0 lπ11

(d(k)) = [d(k) = 1], Glπ0 lπ12
(d(k)) = [0 < d(k) < 1],

and then performing the refinement as in Algorithm 12 that splits lπ0 into lπ00 , lπ01 , lπ02 with

the invariants Glπ0 lπ10
, Glπ0 lπ11

, Glπ0 lπ12
respectively, and with the same data-update and output-

assignment functions as lπ0 . Note only the node lπ00 remains an initial node since the invariant

condition for lπ01 and lπ02 are [d(k) = 1] and [0 < d(k) < 1], which are disjoint from the initial

condition [d(k) = 0]. Also only the node lπ01 remains reachable from lπ2 , whose outgoing edge

guard [d(k) = 1] has nonempty overlap with only the invariant of lπ01 . At this point, each

node has at most one successor, and so refinement introduces no additional locations (meaning

Ln+1 = Ln), causing Algorithm 12 to terminate and yielding the refined CS-HA of Figure 4.6.

Figure 4.4 CS-HA with a cycle-location possessing more than one successor

The following theorem establishes that the refinement step indeed resolves the reachability.

Theorem 3 When Algorithm 12 terminates in finite steps with Ln+1 = Ln, then the refined

PS-HA PΠ from Algorithm 12 has the property that, if there exists a path from the initial

locations to a target location, then the target location is reachable.

Proof: Since location invariants satisfy the preconditions to reach their successors, each

location can eventually transit to its successors by selecting a sequence of input. If there exists

a path from an initial location to the target location, initial location can transit along the

path to any locations on the path and eventually to the target location. Target location is

reachable.
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Figure 4.5 Refined model of the CS-HA in Figure 4.4 with lπ1 split. Dotted
line encloses the locations after the split.

Figure 4.6 Refined model of the CS-HA in Figure 4.5 with lπ0 split. Dotted
line encloses the locations after the split.
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The following theorem provides a condition for the termination of Algorithm 12. It employs

the notion of late-bisimilarity and late-bismulation quotient, which can be found in [28]; a brief

overview is also presented in the appendix for completeness.

Theorem 4 Algorithm 12 terminates if and only if the CS-HA of the Simulink/Stateflow

model preserves a finite late-bisimilar quotient [28].

Proof: Necessity is obvious since Algorithm 12, when it terminates with a finite n, it actually

finds a finite late-bisimilar quotient of the CS-HA. For sufficiency, suppose the CS-HA possesses

a finite late-bisimilar quotient, then it must be finer than the one introduced by the location-

invariants of PΠ [28, Proposition 2]. Suppose for contradiction that Algorithm 12 does not

terminate, then the partition of the data space will not terminate and eventually the partition

will be finer than the partition of the coarsest finite late-bisimilar quotient, which means the

refined CS-HA at that point would be a finite late-bisimilar quotient, causing Algorithm 12 to

terminate, and arriving at a contradiction to the hypothesis.

Example 14 Consider the CS-HA of the counter in Figure 4.3. By applying Algorithm 12

on the CS-HA, the refined CS-HA is obtained in Figure 4.7. The refinement terminates in 1

iteration; the details are omitted for brevity. It turns out that the refinement step does not

introduce any new splits, but out of the total 20 edges (see Figure 4.3), only 8 edges survive;

the others have False guard conditions. From the connectivity information of the refined CS-

HA model of Figure 4.7, it is evident that 4 out of the 5 feasible c-paths are reachable. (π3 is

the only unreachable c-path.)

Remark 2 Example 14 shows a drastic improvement compared to the approach of [15], since

to reach the c-path π2, a prefix of length 100000 must be executed first. (The guard condition

for π2 requires a variable to exceed 100000, while that variable has an initial value 0, and is

incremented by just one, each time a prefix π1 is executed.) Finding such a path using the

search employed in [15] is impossible since it has the complexity of 5100000, which is prohibitive.

In contrast, the new reachability and its resolution based approach presented here succeeds in

establishing the reachability of all reachable c-paths.
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Figure 4.7 Refined model of the CS-HA in Figure 4.3
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Remark 3 Note that the reachability resolution approach can also be applied to general

hybrid automata. If a hybrid automaton satisfies the property in Theorem 4, Algorithm 12

terminates within finite steps, yielding a refined hybrid automaton that is a finite late-bisimilar

quotient, and for which the reachability is decidable.

Note that Algorithm 12 applies to a CS-HA with the following property, that we designate

as Θ for future reference:

Θ: Each edge guard is equivalent to the invariant of its destination location and there are no

data-update or output-assignment functions on the edge.

4.4 Test Generation based on CS-HA

Once the reachability of a c-path is resolved using the refinement of the CS-HA proposed

in the previous section, the following algorithm can be used to generate a test case for the

c-path, i.e., an input sequence that ensures the eventual execution of the c-path.

Algorithm 13 A c-path π ∈ ΠP is reachable if there exists a location l ∈ Ln = Ln+1 in

the refined CS-HA, with Gl ⇒ Gπ, and a path ω = l0 . . . l|ω|−1 starting at an initial location

l0 ∈ Ln0 and ending with the location l|ω|−1 = l. For the path ω, its test case can be computed

iteratively forward as:

Base step:

j = k = 0, and solve for dj , Nj , {uk, . . . , uk+Nj} such that the following holds:

D0 ∧ G0
lj

(dj , {uk, . . . , uk+Nj−1}) ∧ Glj+1
(f
Nj−1
lj

(dj , {uk, . . . , uk+Nj−1}), uk+Nj ). ((The base

step finds an initial (j = 0) data dj , an initial sequence of Nj inputs that execute the initial

c-path lj a total Nj number of times, so that the resulting data dj+1 possesses a next input

that can execute the next c-path lj+1. The base step also finds this next input uNj .)

Recursion step:

If j = |ω| − 1, then go to termination step, else set dj+1 := f
Nj−1
lj

(dj , {uk, . . . , uk+Nj−1}),

{yk+i := hilj (dj , {uk, . . . , uk+i) | 0 ≤ i ≤ Nj − 1}, k := k +Nj , j := j + 1, and solve for Nj and

{uk+1, . . . , uk+Nj} such that the following holds:
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G0
lj

(dj , {uk, . . . , uk+Nj−1}) ∧Glj+1
(f
Nj−1
lj

(dj , {uk, . . . , uk+Nj−1}), uk+Nj ), and return to re-

cursion step. (Similar to the base step, the recursion finds jth sequence of Nj inputs so that

the jth c-path lj can be executed Nj number of times, so that the resulting data dj+1 possesses

a next input that can execute the next c-path lj+1. The recursion step also finds this next

input uNj .)

Termination step:

Return d0 and the input/output-sequence {(u0, y0), . . . , (uk, yk)} as the test case. (The

recursion stops when j = |ω| − 1 at which point each c-path in ω has been executed a certain

number of times in the same order as appearing in ω.)

Remark 4 In order to compute a test case for a reachable c-path, Algorithm 13 requires

an analytical solution of all {f jl , h
j
l : l ∈ ω}, and a solver that can solve for the constraints

{Gl : l ∈ ω}.

In summary, the overall algorithm of our proposed test generation approach for a

Simulink/Stateflow model is as follows.

Algorithm 14 1. Obtain the I/O-EFA model P of a given Simulink/Stateflow diagram ac-

cording to Chapter 2.

2. Apply Algorithm 7 to enumerate the feasible c-paths ΠP of P .

3. Apply Algorithm 10 on ΠP to obtain the CS-HA PΠ of I/O-EFA P .

4. Apply Algorithm 12 to refine PΠ and obtain the refined CS-HA PΠ.

5. Apply Algorithm 13 on PΠ to identify reachable c-paths of P , and to generate their test

cases.

Example 15 Consider the refined CS-HA in Figure 4.7 of the counter in Figure 2.3. By

applying Algorithm 13 on the refined CS-HA, the test cases to reach the reachable c-paths are

obtained in Table 4.2. As can be noted, one of the test cases has a length > 100K, which, as

discussed in Remark 1, could not be generated using the search-based method of Chapter 3.

This illustrates the effectiveness of the new approach proposed here in terms of providing a
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Table 4.2 Test cases generated from the refined CS-HA in Figure 4.7

c-Path Path in CS-HA Test Case

π0 lπ0 u = {1}

π1 lπ0 , lπ1 u = {1, 1}

π2 lπ0 , lπ1 , lπ2 u = {1, . . . , 1}

|u| = 100001

π3 Not Reachable N/A

π4 lπ4 u = {0}

better test coverage, and also its efficiency in terms of the time needed for automated test

generation.

4.5 Applications of CS-HA in Defect-Detection/Requirements-Satisfaction

Simulink/Stateflow models may possess defects, such as overflow conditions (e.g., divided-

by-zero), design ambiguity/conflicts, un-testable condition, etc., which need to be avoided

during the design process. Defect-detection is a step before the test generation to detect

whether any block-specific or user-defined defects exist in the Simulink/Stateflow model. Fail-

ure of detecting the defects may result in severe accidents in case of safety critical applications.

Requirements, on the other hand, are properties defined by users that the Simulink/Stateflow

model must satisfy. Requirements-satisfaction is a step before the test generation to ver-

ify the satisfaction of the critical requirements. Both defect-detection and requirements-

satisfaction can be performed more efficiently using the compact modeling formalism of CS-

HA of Simulink/Stateflow diagram introduced above, together with the reachability resolution

method also proposed above.

Each model defect/requirement that we analyze is assumed to be a property of an in-

put/output computation, and so can be expressed as a predicate over the input/output vari-

ables of the I/O-EFA model of the Simulink/Stateflow diagram. For example, the counter in

Figure 4.1 has the requirement that “output can never exceed 100000 or fall below 0”. The

corresponding predicate is φ(u, y) = [¬(y2(k) > 100000 ∨ y2(k) < 0)].
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Figure 4.8 Simulink model for a division operation

Note the negation of a defect serves as a requirement, and with this observation we can

have a common approach for defect-detection/requirements-satisfaction, where each defect

specification is first negated to turn into a requirements specification. Next a refined CS-HA

of the Simulink model is obtained, in which a fault-location f is introduced whose reachability

corresponds to defect-witness or requirement-violation. The refined CS-HA is obtained as in

the algorithm below. Each location as well as each edge is partitioned into two cases.

Algorithm 15 Given a requirement φ and a CS-HA P = (L,D,U, Y,Σ,∆, L0, D0, L,E), the

φ-refined CS-HA is P φ = (Lφ, D, U, Y,Σ,∆, Lφ0 , D0, L
φ, Eφ), where

• Lφ = Lt ∪ {f} is a set of locations obtained from refining guards of locations L in φ and

adding a fault-location f , where

– Lt =
⋃
l∈L{Gl ∧ φ(u, hl(d, u)), fl, hl} is the set of locations, with invariants also

satisfying φ, and

– f = {−,−,−} is the fault-location with no dynamics since once the fault-location

is reached, the specification is violated and there is no need for further evolution.

• Lφ0 =
⋃
l∈L0
{Gl ∧ φ(u, hl(d, u)), fl, hl} is the set of initial locations, with invariants also

satisfying φ,

• Eφ = Et ∪ Ef is the set of edges, where

– Et =
⋃
e∈E{oe, te,−,−, Gte∧φ(u, hte(d, u)),−,−} is the set of edges with guards also

satisfying the requirement as evaluated at the destination locations and performing

transitions among locations in Lt;
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– Ef =
⋃
l∈Lt{l, f,−,−, (Gl ∧ ¬φ(u, hl(d, u)))

∨
e∈E,oe=l(Gte ∧ ¬φ(u, hte(d, u))),−,−}

is the set of edges to the fault-location f which are taken when either the location

invariants in Lt or the edge guards in Et violate the requirement φ.

The purpose of the refinement algorithm above is to convert the defect-detection and

requirements-violation problems into reachability problems. The refinement merely partitions

the location invariants and edge guards into cases that satisfy the requirement versus the ones

that don’t. As a result, (1) the refinement continues to satisfy the property Θ needed for the

application of Algorithm 12 for reachability resolution, and (2) the behaviors executed by the

refinement P φ are identical to those of P , with the exception that the behaviors violating the

specification are simply terminated at the fault-location.

Example 16 Consider the Simulink model for performing a division operation in Figure 4.8.

The input to the denominator (InputD) is compared with a threshold 0.001 to avoid divided-

by-zero defect. If the absolute value of the denominator input is less than the threshold 0.001,

then the denominator remains at 0.001 or −0.001 (negativity depends on the negativity of

the denominator input); else, the denominator equals to the input. Defect-detection aims to

detect if there is divided-by-zero defect, i.e., if zero is a possible value of the denominator. By

performing the steps 1-3 of Algorithm 14, the CS-HA of the division Simulink model, satisfying

the property Θ is obtained as in Figure 4.9. The predicate for the divided-by-zero defect is

[y6(k) = 0]. The requirement is to avoid the defect and thus has the predicate φ = [y6(k) 6= 0].

By applying Algorithm 15 on the CS-HA in Figure 4.9 with requirement φ, the refinement

is obtained with five locations, which also satisfies the property Θ. The result of refinement

performed by the reachability resolution Algorithm 12 also possesses five locations, and is

shown in Figure 4.10. As can be seen in this figure, the fault-location f is not reachable.

Therefore, the requirement is satisfied by the division Simulink model (i.e. the divided-by-zero

defect is not present in the model).

Example 17 Consider the counter in Figure 4.1 with requirement that “whenever input is

non-positive output is zero, otherwise output can be arbitrary”. The predicate for this re-
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Figure 4.9 CS-HA of the division model in Figure 4.8. Only the output-as-
signment function that assigns the second input to the denom-
inator is shown.

Figure 4.10 Refinement of the CS-HA in Figure 4.9 against the requirement
φ = [y6(k) 6= 0]. Only the output-assignment function that
assigns the second input to the denominator is shown.
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quirement is φ = [(u(k) ≤ 0 ∧ y2(k) = 0) ∨ u(k) > 0]. By performing the refinement, using

Algorithm 15, of the CS-HA in Figure 4.7 against the requirement φ, the result is obtained

with six locations. The result of applying Algorithm 12 possesses five locations and is shown

in Figure 4.11. Invariant of lπ4 is False and the location is not shown, since evolvement in

lπ4 violates the requirement φ (y2(k) should be zero when u(k) ≤ 0, but y2(k) is assigned

with 2 in lπ4). As can be seen in Figure 4.11, the fault-location f is reachable. Therefore, the

requirement is not satisfied by the counter Simulink model.

Remark 5 Application of CS-HA for defect-detection and requirements-satisfaction shares

the same advantage as its application to the test generation problem, namely: The existence

of the defects and the satisfiability of the requirements are reduced to the reachability problem

of the fault-location in the CS-HA, for which the reachability resolution method for CS-HA

introduced in Section IV offers better efficiency (faster analysis time) and effectiveness (no

pre-defined search depth is needed).

4.6 Case Study: a Thermal Control

In this section, the Simulink/Stateflow test generation approach described above is vali-

dated with a realistic application of a thermal control of a house from the Simulink demo [1],

as shown in Figure 4.12. This system models the outdoor environment, the thermal character-

istics of the house, and the house heating system. “Set Point” is a constant block. It specifies

the temperature that must be maintained indoors, and equals 70 degrees Fahrenheit by de-

fault. Temperatures are given in Fahrenheit, but then are converted to Celsius to perform the

calculations. “Thermostat” is a subsystem that contains a Relay block. The thermostat allows

fluctuations of 5 degrees Fahrenheit above or below the desired room temperature. When

air temperature drops below 65 degrees Fahrenheit, the thermostat turns on the heater. The

thermostat signal turns the heater on or off. When the heater is on, it blows hot air at tem-

perature THeater (50 degrees Celsius = 122 degrees Fahrenheit by default) at a constant flow

rate of Mdot (1kg/sec = 3600kg/hr by default). “House” is a subsystem that calculates room

temperature variations. It takes into consideration the heat flow from the heater and heat
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Figure 4.11 Refinement of the CS-HA in Figure 4.7 against the requirement
φ = [(u(k) ≤ 0 ∧ y2(k) = 0) ∨ u(k) > 0]. The guards of the
edges with destination locations other than the fault-location
are the same as the invariants in their destination locations
and therefore are omitted.
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losses to the environment. “Cost Calculator” is a Gain block. “Cost Calculator” integrates

the heat flow over time and multiplies it by the energy cost. We model the environment as a

heat sink with infinite heat capacity and a constant temperature Tout. The sample time of

the model is T = 0.001.

The I/O-EFA model of the thermal control of a house can be obtained as in Figure 4.13.

There are 16 possible c-paths, out which four feasible as determined by applying Algorithm 7.

The corresponding CS-HA is obtained as in Figure 4.14 by executing Algorithm 10. In Fig-

ure 4.14, lπ0 represents the computation that when the house temperature is lower than 5

degrees below the desired room temperature, the heater is on to increase the temperature

of the house; lπ1 represents the computation that when the house temperature is within ±5

degrees of the desired room temperature with the heater previously on, the heater remains on

to increase the temperature of the house; lπ2 represents the computation that when the house

temperature is greater than 5 degrees above the desired room temperature, the heater is off so

that house temperature decreases due to the heat losses to the environment; lπ3 represents the

computation that when the house temperature is within ±5 degrees of the desired room tem-

perature with the heater previously off, the heater remains off so that the house temperature

decreases due to the heat losses to the environment.

Figure 4.12 Simulink model for a thermal model of a house

The refined CS-HA of the thermal model of a house can be obtained as in Figure 4.15 by

applying Algorithm 12 for one iteration on the CS-HA in Figure 4.14. The edge guards that
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Figure 4.13 I/O-EFA model for the thermal model of a house in Fig-
ure 4.12, where THeater = 50, Req = 4.26976e − 07,
Mdot = 3600, c = 1005.4, M = 1778.37, and T = 0.001.
I/O-EFA modules with empty edge labels are omitted and
represented as dotted arrows.

Figure 4.14 CS-HA model for the thermal model of a house in Figure 4.12.
Output-assignment functions of the locations are omitted.



www.manaraa.com

76

Table 4.3 Test Cases of the Thermal Model of a House

c-Path Number Test Case (number of time steps

to run the model)

π0 k = 142

π1 k = 143

π2 k = 0

π3 k = 220

become false after the initial iteration are omitted from the figure. In Figure 4.15, there exists

a path from the initial location to each location in the CS-HA, therefore, all four locations

are reachable. By applying Algorithm 13, a set of test cases can be obtained by analytically

solving the difference equations in each location (totally four computations). The result of the

test generation is shown in Table 4.3, where we can see that by running the model for 220 time

steps all four c-paths of the model can be executed.

Figure 4.15 Refined CS-HA model for the thermal model of a house in Fig-
ure 4.12 from the CS-HA in Figure 4.14. Output-assignment
functions of the locations are omitted.

The case study illustrates the benefit of the proposed test generation approach that, instead

of exhaustively searching for 4220 iterations to obtain the test cases using a search-based test

generation approach, the proposed approach resolves the reachability of each c-path by applying

one iteration of Algorithm 12 and finds the test cases in four computations. Moreover, no pre-
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defined maximum test case length is required for the proposed approach. In contrast, most of

the existing tools require a user-defined maximum test case length, and also do not exploit the

fact that certain discrete-time flows may be analytically solvable, so multiple time-steps could

all be explored at once. Selecting a maximum test case length is adhoc, and an inappropriate

selection of maximum test case length may either reduce the test coverage (selected length is

smaller than required length) or increase the time for the tools to generate test cases (selected

length is larger than required length).
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CHAPTER 5 Test Validation and Error Localization

In this chapter, we complete the testing process by introducing the validation methods

to validate the model-based tests against the requirements and the requirements-based tests

against the model for “fail/pass” obtained from Chapter 3, 4. Further, we develop an error

localization approach that uses the failed versus passed tests to locate the errors within the

Simulink/Stateflow blocks.

5.1 Test Validation

First unit test for each block is conducted to verify that the output of output-assignment

function from I/O-EFA and the output from the generated code of the block is close to each

other (within specified tolerance). First, test generation approach in Chapter 3, 4 is performed

on the I/O-EFA of the block to generate test cases for the block. The generated test cases

are executed on I/O-EFA and the compiled generated code to measure the difference of the

outputs. If the outputs are within specified tolerance, the unit test passes; otherwise, test fails.

A test from M-test (resp. R-test) passes/fails if the requirements (resp. the model) ac-

cepts/rejects it. We first present the algorithm to validate the cases generated from M-test

against the requirements.

Algorithm 16 Given a LTL requirement φ of a Simulink/Stateflow model and a M-test t for

the Simulink/Stateflow model, t is validated in the following steps.

1. Compute the Büchi automaton R = (Q,Γ,Ξ, Q0, Qm) accepting φ;

2. Simulate R with the test t to check if t is accepted by R, i.e. if starting from q0 ∈ Q0,

the simulation reaches qm ∈ Qm (qm is within a strongly connected component);

3. If t is accepted by R, t passes; else, t fails.
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Next we present an algorithm to validate a R-test against the model. For this, as a first

step, an augmented I/O-EFA is obtained from the I/O-EFA model of the Simulink/Stateflow

model and a R-test, as defined in the algorithm below.

Algorithm 17 Given an I/O-EFA P = (L,D,U, Y,Σ,∆, L0, D0, Lm, E) and a test case t =

(u0, y0) . . . (u|t|−1, y|t|−1), its augmented I/O-EFA P t is a tuple P t = (Lt, D, U, Y,Σ,∆, L0, D0,

Lm, E
t), where

• Lt = L ∪ {lf}, where the added lf denotes a faulty location,

• Et is obtained by replacing each edge e = (oe, te, σe, δe, Ge, fe, he) ∈ E by a pair of edges

et = (oe, te, σe, δe, Ge ∧ (y = he), fe, he), and ef = (oe, lf , σe, δe, Ge ∧ (y 6= he), fe, he).

Note that the augmented I/O-EFA rejects a R-test t if and only if the simulation of the

augmented I/O-EFA P t with the test t leads to the faulty location lf . Thus the R-tests are

validated as in the algorithm below.

Algorithm 18 Given an I/O-EFA model P of a Simulink/Stateflow model and a R-test t, t

is validated in the following steps.

1. Apply Algorithm 17 on P and t to obtain the augmented I/O-EFA P t.

2. Simulate P t with the test t for |t| − 1 time steps to check if P t reaches lf .

3. If P t reaches lf , t fails; else, t passes.

5.2 Localizing Errors

Recall that a M-test t is a path-sequence in the I/O-EFA model and we let πt denote its

edge sequence. On the other hand, a R-test t is executed in the augmented model P t as in

Algorithm 18 and it traces a sequence of edges which we again denote as πt. The failing of a

test t signifies the manifestation of a fault that resides in a subsequence πf of the edge-sequence

πt executed by t. For notational convenience we denote a subsequence πf of the edge-sequence

πt executed by t as πf � πt. A subsequence πf � πt serves as plausible root cause for the fault

witnessed by the test t, called a fault-seed as introduced in [29], if for any edge-sequence that



www.manaraa.com

80

contains πf as a subsequence, a failure is inevitable. [29] showed that the problem of checking

whether a subsequence πf � πt of a failed test t is a fault-seed if and only if the following

CTL formula is satisfied in P f‖R: EFm ∧AG(m→ AFf). Here m is the length of πf ; P f is

a refinement of P that can execute all edge-sequences of P that contain πf as a subsequence;

and R is an automaton accepting all runs of a requirement. The definition of P f can be

found in [29]; the definition of the composition P f‖R is given below; and the CTL formula

itself has the following meaning: “Exists a run that fully executes the subsequence πf” (as

captured by EFm) and “For all runs always if πf is a subsequence, then for all subsequent runs

eventually fault occurs” (as captured by AG(m → AFf)). The composition of an I/O-EFA

P f and a Büchi automaton R is obtained so as to synchronize each edge of R, which as stated

earlier implicitly advances the time counter, with the time-advancement edge etime of P f . So

the time-advancement edge etime = {lm, l0,−, {k := k + 1}} of P f (lm and l0 are final and

initial locations of P f and k is time counter), is paired with each edge in edge set Ξ of R (as

captured by Etime below), and each non time-advancement edge E−{etime} of P f is executed

asynchronously in which the state of R does not change (as captured by E − {etime} × Q

below). Finally to track the violation of the LTL requirement modeled by R, additional edges

are added that steer the composition to a newly added faulty state f (as captured by Ef ).

Definition 7 Given a Büchi Automata R = (Q,Γ,Ξ, Q0, Qm) of a LTL requirement ψ and

a I/O-EFA model P f = (L,D,U, Y,Σ,∆, {l0}, D0, {lm}, E), their composition is an I/O-EFA,

P‖R = ((L×Q) ∪ {f}, D, U, Y,Σ,∆, {l0} ×Q0, D0, {lm} ×Qm, E‖), where

• E‖ = Etime
⋃

((E − {etime})×Q)
⋃
Ef is the set of edges, where

– Etime =
⋃

(qi,γ,qj)∈Ξ{(lm, qi), (l0, qj), γ, {k := k+ 1}} is the set of time-advancement

of P f‖R in which both P f and R transition synchronously;

– (E − etime) × Q is the set of non time-advancement edges of P f‖R in which only

P f transitions asynchronously;

– Ef =
⋃
q∈Q{(lm, q), f, [¬

∨
(q,γ,q′)∈Ξ γ],−}

is the set of transition edges to the faulty location f .
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It can be seen that the above definition creates one copy of the I/O-EFA P f for each state

q ∈ Q of R in the composition P f‖R. The results computed by fully executing a copy of P f

are used to decide a next edge guard satisfied in R and advancing R along that edge, and also

simultaneously passing the control to the next copy of P f . Note whenever the execution of P f

violates the requirement R, it reaches the faulty location f .

The search of a fault-seed can be enhanced by noting that a fault-seed cannot be a subse-

quence of a passed test, and so the set of failed tests can be compared with the set of passed

tests to narrow down the search for a fault-seed. The overall algorithm for the error localization

is as follows.

Algorithm 19 Given a set of failed test T f , a set of passed test T p, the I/O-EFA P , and the

requirement model R, the fault-seeds are identified as follows.

1. Map each failed/passed test t to its executed sequence of edges πt.

2. Identify the set of candidate subsequences {πf � πt, t ∈ T f −T p} that are subsequences

of a failed test but not a passed test.

3. Arrange the candidate subsequences in the order of increasing length, and for each

candidate πf , picked in the order from shortest to longest, do the following:

- obtain the refined P f as defined in [29, Algorithm 1, Step 5] that can execute all edge-

sequences of P that contain πf as a subsequence;

- form the composition P f‖R using Definition 7;

- model-check P f‖R against the CTL formula EFm ∧AG(m→ AFf);

- return πf as fault-seed if and only if the CTL formula is satisfied.

5.3 Mapping Faulty Edges Back to Simulink/Stateflow Diagram

In order to debug the Simulink/Stateflow design, each fault-seed (sequence of edges) is

mapped back to the corresponding Simulink/Stateflow blocks to help locate the error. Each

edge of a fault-seed is unambiguously mapped to a computation by a block of the underlying

Simulink/Stateflow diagram.
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Consider the I/O-EFA model of the counter in Figure 2.2. The edge e2 of the I/O-EFA

model corresponds to the computation “reset the counter to the initial output”. The computa-

tion occurs in the “Enabled Subsystem” block and the related block parameters are “enabling

type” and “Initial output”. If a fault-seed is πf = e2, the root-cause of the error occurs in the

“enabling type” or “Initial output” parameters of the “Enabled Subsystem” block.

Example 18 Suppose the counter in Figure 2.1 erroneously sets the initial output as 2, and

suppose the requirement is given by, φ = [u ≤ 0 ⇒ y2 = 0]U [L(u ≤ 0)], whose acceptor

Büchi automaton R is shown in Figure 3.1. By validating the M-tests listed in Table 3.3

against the requirements model R according to Algorithm 16, we can note that the test case

t = {(0, 2)} fails. The edge sequence that is executed by this test is πt = e2e8e10e12e13e20e21.

By applying Algorithm 19 on the failed test, the fault seed is identified as πf = e2 � πt, which

maps to the Simulink/Stateflow block “Enabled Subsystem”. Since the edge e2 references two

parameters of this block, “Initial Output” and “Enabling Type”, the fault must reside in one

of the two parameters. A manual inspection can then pin-point the fault to the erroneous

“Initial Condition”.
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CHAPTER 6 Conclusion and Future Work

6.1 Summary

In this dissertation, we studied and proposed a model-based approach to automated test

generation and error localization for Simulink/Stateflow, which overcomes many limitations of

the existing approaches and tools. Below summarizes the dissertation.

We presented a translation approach from Stateflow chart to Input/Output Extended Finite

Automata (I/O-EFA). A Stateflow state, which is the most basic component of Stateflow chart,

is modeled as an atomic model. The composition rules for AND/OR hierarchy are defined

to connect the atomic state models. An overall I/O-EFA model is obtained by recursively

applying the two composition rules in a bottom-up fashion over the tree structure of the state

hierarchy. Rules for further refining the model to incorporate other Stateflow features such

as events, historical information, interlevel transitions, etc. have been developed. Finally, the

Stateflow model is adapted to resemble a Simulink model, since at the highest level a Stateflow

chart is a block in the Simulink library. The size of the translated model is linear in the size

of the Stateflow chart. Both the Stateflow and Simulink translation approaches have been

implemented in an automated translation tool SS2EFA. The translated I/O-EFA models are

validated to preserve the discrete behaviors of the original Simulink/Stateflow models. The

translated I/O-EFA models can be used for further formal analysis such as verification and

test generation.

Further, we presented a model and requirements based test generation approach for

Simulink/Sateflow. While preserving the discrete behaviors, a Simulink/Stateflow diagram

is translated to an I/O-EFA model, with each path of the I/O-EFA model representing a

computation sequence of the Simulink/Stateflow diagram. Paths are inspected for feasibility
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and reachability. They are further used for test generation and model soundness analysis. Two

techniques, model-checking and constraint solving, are applied to implement this approach.

Model-checker based implementation maps I/O-EFA to a finite abstracted transition system

modeled in NuSMV file. Test cases are generated by checking each path in I/O-EFA against

the model in NuSMV. Constraint solving based implementation utilizes two algorithms to

recursively compute the path and path-sequence predicate respectively for capturing their

feasibility. Test cases are obtained from the predicates of the reachable paths. The performance

of both implementations was evaluated with a case study. The results showed that both

implementations can generate the expected results and the implementation based on constraint

solving is superior to the implementation based on model checker with respect to the speed

of test generation. Requirements-based test generation was also discussed. This was done by

modeling each LTL requirement as a Büchi automaton, and selecting all acyclic paths between

the initial and final states.

We then presented an improved test generation approach for Simulink/Stateflow extending

and enhancing the test generation approach presented in Chapter 3. A discrete-time hybrid

automaton called a computation-succession hybrid automaton (CS-HA) was introduced to

capture the feasible computation-succession among the feasible c-paths. The test generation

problem was then reduced to a reachability analysis problem of the CS-HA. A novel reachability

resolution method was introduced to refine the CS-HA, such that the reachability is reduced to

the reachability within its underlying graph, ignoring the dynamics. Test generation was then

performed over the refined CS-HA by selecting a path from the initial locations to a target

location and finding an input sequence to activate the path. The overall algorithm for the

test generation approach is decidable for the class of Simulink/Stateflow diagrams possessing

a finite late-bisimilar quotient.

Finally, for validation purposes, we presented the approach where model-based tests are

validated against the requirements, whereas the requirements-based tests are validated against

the model. In both cases, the failed versus passed tests are compared and analyzed to determine

a fault-seed, or a plausible root cause. This was further mapped to the Simulink/Stateflow
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diagram to identify the plausible faulty blocks and their erroneous parameters.

6.2 Directions for Further Research

This dissertation has laid a foundation for automated verification/validation of

Simulink/Stateflow based on extended finite automata, and opens up several avenues for future

work in this area.

1. Robustness of Simulink/Stateflow regarding platform inaccuracies: The target platforms

where the generated code from Simulink/Stateflow will be deployed on have limited

computation power and input-output signals may be perturbed by noise, therefore, the

implemented system may perform different behaviors than that should be performed in

the Simulink/Stateflow. Simulink/Stateflow model along with the target platform and

associated environment can be verified to ensure the implementation preserves the control

and data flow of the Simulink/Stateflow model, such that possible failures can be avoided

at the early stage of the design process.

2. System-level verification/testing: A cyber-physical system consists three main compo-

nents: computation component, communication component and physical component.

Verification&Validation method should not only consider the verification/testing within

each component, but also include the interaction among these components. However,

components are modeled separately and isolated from each other when verification/testing

is performed. Future directions can attempt to translate the model of each component

into a uniform model or propose a compositional approach, where an interface will be

designed which can let verification tool of each component to communicate with each

other.

3. Concurrency with Simulink/Stateflow: Simulink/Stateflow and the generated code are

executed sequentially. When multiple pieces of generated code are executed concurrently

on the platform, the concurrent system needs to be verified and tested to ensure its

absence of concurrency issues, such as deadlock an starvation. However, since computa-
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tions in a concurrent system can interact with each other while they are executing, the

number of possible execution paths in the system can be extremely large, which may lead

to state explosion problem. Future work can study the problem of concurrency verifica-

tion/testing with Simulink/Stateflow and the approach to reduce the search space of the

verification/testing techniques.
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APPENDIX A Finite Bisimulation Quotient

Note that a discrete-time hybrid automaton can be modeled as an I/O-EFA by removing the

guards/data-updates/output-assignments from the locations and introducing self-loop edges

with the same guards/data-updates/output-assignments. So instead of defining the properties

of a discrete-time hybrid automaton it suffices to define the properties of an I/O-EFA, as below.

Simulation (resp., late-simulation) and bisimulation (resp., late-bisimulation) relations are

defined as follows. For an I/O-EFA P , the notation (l, d)
σ,δ,u,y−→ (l′, d′) implies the existence of

e ∈ E such that oe = l, te = l′, σe = σ, δe = δ, Ge(d, u) holds, and d′ = fe(d, u) and y = he(d, u).

Definition 8 Given an I/O-EFA P , a simulation relation over its states is a binary relation

Φ ⊆ (L × D) × (L × D) such that ((l1, d1), (l2, d2)) ∈ Φ implies ∀e1,∀u,∃e2 : σe2 = σe1 :=

σ, and [(l1, d1)
σ,δ,u,y−→(l′1, d

′
1), l1

e1−→l′1]⇒ ∃[(l2, d2)
σ,δ,u,y−→ (l′2, d

′
2), l2

e2−→l′2] s.t. ((l′1, d
′
1), (l′2, d

′
2)) ∈ Φ.

Similarly, a late-simulation relation over states of P is a binary relation Φ ⊆ (L × D) ×

(L×D) such that ((l1, d1), (l2, d2)) ∈ Φ implies ∀e1,∃e2 : σe2 = σe1 := σ, and ∀u, [(l1, d1)
σ,δ,u,y−→

(l′1, d
′
1), l1

e1−→l′1]⇒∃[(l2, d2)
σ,δ,u,y−→ (l′2, d

′
2), l2

e2−→l′2] s.t. ((l′1, d
′
1), (l′2, d

′
2)) ∈ Φ.

A symmetric simulation (resp., late-simulation) relation is called bisimulation (resp., late-

bisimulation) relation. Two systems P1 and P2 are said to be bisimilar (resp., late-bisimilar) if

there exists a bisimulation (resp., late-bisimulation) relation Φ ⊆ (L1×D1)×(L2×D2) such that

for each (l10, d10) ∈ L10×D10 there exists (l20, d20) ∈ L20×D20 such that ((l10, d10), (l20, d20)) ∈

Φ.

Given a partition of the set of the data and the inputs, one can obtain a quotient system

of an I/O-EFA as follows.
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Definition 9 Given an I/O-EFA P = (L,D,U, Y,Σ,∆, L0, D0, Lm, E) and a partition G of

D × U that refines the partition induced by the set of guards of P , the quotient of P with

respect to the partition G is P G = (LG , D, U, Y,Σ,∆, LG0 , D0, L
G , EG), where

• LG = L× G,

• LG0 = L0 × G, and

• ((l, G), (l′, G′), σ, δ,G′, f, h) ∈ EG ⇔ [∃(l, l′, σ, δ,G, f, h) ∈ E : (G′(d, u)⇒ G(d, u))].

In other words, each location in P is split into a number of locations, one per partition-cell,

and each edge in P is split into a number of edges, one per pair of partition-cells, with the

edge-guard in P G being the same as the successor location’s partition-cell (which by definition

is stronger than the edge-guard in P ).

P G is called a bisimilar (resp., late-bisimilar) quotient of P if P G is bisimilar (resp., late-

bisimilar) to P .
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